Impact of neutrino decays on the supernova neutronization-burst flux

André de Gouvêa (Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA) ; Ivan Martinez-Soler (Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA; Theory Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA; Colegio de Física Fundamental e Interdisciplinaria de las Américas (COFI), 254 Norzagaray Street, San Juan, Puerto Rico 00901) ; Manibrata Sen (Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA)

The discovery of nonzero neutrino masses invites one to consider decays of heavier neutrinos into lighter ones. We investigate the impact of two-body decays of neutrinos on the neutronization burst of a core-collapse supernova—the large burst of νe during the first 25 ms post-core-bounce. In the models we consider, the νe, produced mainly as a ν3(ν2) in the normal (inverted) mass ordering, are allowed to decay to ν1(ν3) or ν¯1(ν¯3) and an almost massless scalar. These decays can lead to the appearance of a neutronization peak for a normal mass ordering or the disappearance of the same peak for the inverted one, thereby allowing one mass ordering to mimic the other. Simulating supernova-neutrino data at the Deep Underground Neutrino Experiment (DUNE) and the Hyper-Kamiokande (HK) experiment, we compute their sensitivity to the neutrino lifetime. We find that, if the mass ordering is known and depending on the nature of the physics responsible for the neutrino decay, DUNE is sensitive to lifetimes τ/m106 s/eV for a Galactic supernova sufficiently close by (around 10 kpc), while HK is sensitive to lifetimes τ/m107 s/eV. These sensitivities are far superior to existing limits from solar-system-bound oscillation experiments. Finally, we demonstrate that using a combination of data from DUNE and HK, one can, in general, distinguish between decaying Dirac neutrinos and decaying Majorana neutrinos.

{
  "_oai": {
    "updated": "2021-08-29T03:47:13Z", 
    "id": "oai:repo.scoap3.org:52802", 
    "sets": [
      "PRD"
    ]
  }, 
  "authors": [
    {
      "raw_name": "Andr\u00e9 de Gouv\u00eaa", 
      "affiliations": [
        {
          "country": "USA", 
          "value": "Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA"
        }
      ], 
      "surname": "de Gouv\u00eaa", 
      "given_names": "Andr\u00e9", 
      "full_name": "de Gouv\u00eaa, Andr\u00e9"
    }, 
    {
      "raw_name": "Ivan Martinez-Soler", 
      "affiliations": [
        {
          "country": "USA", 
          "value": "Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA"
        }, 
        {
          "country": "USA", 
          "value": "Theory Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA"
        }, 
        {
          "country": "Puerto Rico", 
          "value": "Colegio de F\u00edsica Fundamental e Interdisciplinaria de las Am\u00e9ricas (COFI), 254 Norzagaray Street, San Juan, Puerto Rico 00901"
        }
      ], 
      "surname": "Martinez-Soler", 
      "given_names": "Ivan", 
      "full_name": "Martinez-Soler, Ivan"
    }, 
    {
      "raw_name": "Manibrata Sen", 
      "affiliations": [
        {
          "country": "USA", 
          "value": "Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA"
        }, 
        {
          "country": "USA", 
          "value": "Department of Physics, University of California Berkeley, Berkeley, California 94720, USA"
        }
      ], 
      "surname": "Sen", 
      "given_names": "Manibrata", 
      "full_name": "Sen, Manibrata"
    }
  ], 
  "titles": [
    {
      "source": "APS", 
      "title": "Impact of neutrino decays on the supernova neutronization-burst flux"
    }
  ], 
  "dois": [
    {
      "value": "10.1103/PhysRevD.101.043013"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "101", 
      "journal_title": "Physical Review D", 
      "material": "article", 
      "journal_issue": "4", 
      "year": 2020
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2021-08-25T10:40:14.504984", 
    "source": "APS", 
    "method": "APS", 
    "submission_number": "810b323c058f11ecb53772fd3742099d"
  }, 
  "page_nr": [
    17
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/4.0/", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Published by the American Physical Society", 
      "year": "2020"
    }
  ], 
  "control_number": "52802", 
  "record_creation_date": "2020-02-18T17:30:06.283810", 
  "_files": [
    {
      "checksum": "md5:e75a179a9b044f3ec1d7709440f31de5", 
      "filetype": "pdf", 
      "bucket": "de1d995f-9652-472b-b00a-56187f9da342", 
      "version_id": "61a867eb-26b5-4524-99ac-5c0e761d22a3", 
      "key": "10.1103/PhysRevD.101.043013.pdf", 
      "size": 736822
    }, 
    {
      "checksum": "md5:81a33a4dd19d79fc653961964a2d500b", 
      "filetype": "xml", 
      "bucket": "de1d995f-9652-472b-b00a-56187f9da342", 
      "version_id": "a8601346-dac1-4091-8de0-e266e8732d0c", 
      "key": "10.1103/PhysRevD.101.043013.xml", 
      "size": 267056
    }
  ], 
  "collections": [
    {
      "primary": "HEP"
    }, 
    {
      "primary": "Citeable"
    }, 
    {
      "primary": "Published"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph", 
        "astro-ph.CO", 
        "astro-ph.SR", 
        "hep-ex"
      ], 
      "value": "1910.01127"
    }
  ], 
  "abstracts": [
    {
      "source": "APS", 
      "value": "The discovery of nonzero neutrino masses invites one to consider decays of heavier neutrinos into lighter ones. We investigate the impact of two-body decays of neutrinos on the neutronization burst of a core-collapse supernova\u2014the large burst of <math><msub><mi>\u03bd</mi><mi>e</mi></msub></math> during the first 25 ms post-core-bounce. In the models we consider, the <math><msub><mi>\u03bd</mi><mi>e</mi></msub></math>, produced mainly as a <math><msub><mi>\u03bd</mi><mn>3</mn></msub><mo>(</mo><msub><mi>\u03bd</mi><mn>2</mn></msub><mo>)</mo></math> in the normal (inverted) mass ordering, are allowed to decay to <math><msub><mi>\u03bd</mi><mn>1</mn></msub><mo>(</mo><msub><mi>\u03bd</mi><mn>3</mn></msub><mo>)</mo></math> or <math><msub><mover><mi>\u03bd</mi><mo>\u00af</mo></mover><mn>1</mn></msub><mo>(</mo><msub><mover><mi>\u03bd</mi><mo>\u00af</mo></mover><mn>3</mn></msub><mo>)</mo></math> and an almost massless scalar. These decays can lead to the appearance of a neutronization peak for a normal mass ordering or the disappearance of the same peak for the inverted one, thereby allowing one mass ordering to mimic the other. Simulating supernova-neutrino data at the Deep Underground Neutrino Experiment (DUNE) and the Hyper-Kamiokande (HK) experiment, we compute their sensitivity to the neutrino lifetime. We find that, if the mass ordering is known and depending on the nature of the physics responsible for the neutrino decay, DUNE is sensitive to lifetimes <math><mrow><mi>\u03c4</mi><mo>/</mo><mi>m</mi><mo>\u2272</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><mtext> </mtext><mtext> </mtext><mi>s</mi><mo>/</mo><mi>eV</mi></mrow></math> for a Galactic supernova sufficiently close by (around 10 kpc), while HK is sensitive to lifetimes <math><mi>\u03c4</mi><mo>/</mo><mi>m</mi><mo>\u2272</mo><msup><mn>10</mn><mn>7</mn></msup><mtext> </mtext><mtext> </mtext><mi>s</mi><mo>/</mo><mi>eV</mi></math>. These sensitivities are far superior to existing limits from solar-system-bound oscillation experiments. Finally, we demonstrate that using a combination of data from DUNE and HK, one can, in general, distinguish between decaying Dirac neutrinos and decaying Majorana neutrinos."
    }
  ], 
  "imprints": [
    {
      "date": "2020-02-18", 
      "publisher": "APS"
    }
  ]
}
Published on:
18 February 2020
Publisher:
APS
Published in:
Physical Review D , Volume 101 (2020)
Issue 4
DOI:
https://doi.org/10.1103/PhysRevD.101.043013
arXiv:
1910.01127
Copyrights:
Published by the American Physical Society
Licence:
CC-BY-4.0

Fulltext files: