Quantization of a self-dual conformal theory in (2 + 1) dimensions
Francesco Andreucci (SISSA, Via Bonomea 265, Trieste, 34136, Italy, Dipartimento di Fisica, Università di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze, 50019, Italy); Andrea Cappelli (INFN, Sezione di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze, 50019, Italy); Lorenzo Maffi (Dipartimento di Fisica, Università di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze, 50019, Italy, INFN, Sezione di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze, 50019, Italy)
Compact nonlocal Abelian gauge theory in (2 + 1) dimensions, also known as loop model, is a massless theory with a critical line that is explicitly covariant under duality transformations. It corresponds to the large N F limit of self-dual electrodynamics in mixed three-four dimensions. It also provides a bosonic description for surface excitations of three-dimensional topological insulators. Upon mapping the model to a local gauge theory in (3 + 1) dimensions, we compute the spectrum of electric and magnetic solitonic excitations and the partition function on the three torus $$ {\mathbbm{T}}_3 $$ . Analogous results for the S 2 × S 1 geometry show that the theory is conformal invariant and determine the manifestly self-dual spectrum of conformal fields, corresponding to order-disorder excitations with fractional statistics.