Growth index of matter perturbations in the light of Dark Energy Survey

Spyros Basilakos (Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efesiou 4, Athens, 11527, Greece; National Observatory of Athens, V. Paulou and I. Metaxa, Penteli, 15236, Greece) ; Fotios Anagnostopoulos (Department of Physics, National and Kapodistrian University of Athens, Zografou Campus GR 157 73, Athens, Greece)

We study how the cosmological constraints from growth data are improved by including the measurements of bias from Dark Energy Survey (DES). In particular, we utilize the biasing properties of the DES Luminous Red Galaxies (LRGs) and the growth data provided by the various galaxy surveys in order to constrain the growth index ($$\gamma $$ γ ) of the linear matter perturbations. Considering a constant growth index we can put tight constraints, up to $$\sim 10\%$$ 10% accuracy, on $$\gamma $$ γ . Specifically, using the priors of the Dark Energy Survey and implementing a joint likelihood procedure between theoretical expectations and data we find that the best fit value is in between $$\gamma =0.64\pm 0.075$$ γ=0.64±0.075 and $$0.65\pm 0.063$$ 0.65±0.063 . On the other hand utilizing the Planck priors we obtain $$\gamma =0.680\pm 0.089$$ γ=0.680±0.089 and $$0.690\pm 0.071$$ 0.690±0.071 . This shows a small but non-zero deviation from General Relativity ($$\gamma _{\mathrm{GR}}\approx 6/11$$ γGR6/11 ), nevertheless the confidence level is in the range $$\sim 1.3-2\sigma $$ 1.3-2σ . Moreover, we find that the estimated mass of the dark-matter halo in which LRGs survive lies in the interval $$\sim 6.2 \times 10^{12} h^{-1} M_{\odot }$$ 6.2×1012h-1M and $$1.2 \times 10^{13} h^{-1} M_{\odot }$$ 1.2×1013h-1M , for the different bias models. Finally, allowing $$\gamma $$ γ to evolve with redshift [Taylor expansion: $$\gamma (z)=\gamma _{0}+\gamma _{1}z/(1+z)$$ γ(z)=γ0+γ1z/(1+z) ] we find that the $$(\gamma _{0},\gamma _{1})$$ (γ0,γ1) parameter solution space accommodates the GR prediction at $$\sim 1.7-2.9\sigma $$ 1.7-2.9σ levels.

{
  "_oai": {
    "updated": "2020-05-20T06:50:27Z", 
    "id": "oai:repo.scoap3.org:53175", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Greece", 
          "value": "Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efesiou 4, Athens, 11527, Greece", 
          "organization": "Academy of Athens"
        }, 
        {
          "country": "Greece", 
          "value": "National Observatory of Athens, V. Paulou and I. Metaxa, Penteli, 15236, Greece", 
          "organization": "National Observatory of Athens, V. Paulou and I. Metaxa"
        }
      ], 
      "surname": "Basilakos", 
      "email": "svasil@academyofathens.gr", 
      "full_name": "Basilakos, Spyros", 
      "given_names": "Spyros"
    }, 
    {
      "affiliations": [
        {
          "country": "Greece", 
          "value": "Department of Physics, National and Kapodistrian University of Athens, Zografou Campus GR 157 73, Athens, Greece", 
          "organization": "National and Kapodistrian University of Athens"
        }
      ], 
      "surname": "Anagnostopoulos", 
      "email": "fotis-anagnostopoulos@hotmail.com", 
      "full_name": "Anagnostopoulos, Fotios", 
      "given_names": "Fotios"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Growth index of matter perturbations in the light of Dark Energy Survey"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-020-7770-8"
    }
  ], 
  "publication_info": [
    {
      "page_end": "9", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "80", 
      "artid": "s10052-020-7770-8", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "3"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-05-20T08:31:02.839336", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "54c22b4c9a6311eaad8602163e01809a"
  }, 
  "page_nr": [
    9
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2020"
    }
  ], 
  "control_number": "53175", 
  "record_creation_date": "2020-03-06T13:30:32.511685", 
  "_files": [
    {
      "checksum": "md5:721855aa02c646517da079d16629490a", 
      "filetype": "xml", 
      "bucket": "1430e4bb-8f77-41a6-b547-e9731a0d4703", 
      "version_id": "2a53bceb-af8e-43c3-8bd6-86b2b5349572", 
      "key": "10.1140/epjc/s10052-020-7770-8.xml", 
      "size": 25161
    }, 
    {
      "checksum": "md5:f6b3e1c35f835b9b465ede5ca3840757", 
      "filetype": "pdf/a", 
      "bucket": "1430e4bb-8f77-41a6-b547-e9731a0d4703", 
      "version_id": "058f771c-4d3e-422f-a639-93fee75a602c", 
      "key": "10.1140/epjc/s10052-020-7770-8_a.pdf", 
      "size": 630775
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We study how the cosmological constraints from growth data are improved by including the measurements of bias from Dark Energy Survey (DES). In particular, we utilize the biasing properties of the DES Luminous Red Galaxies (LRGs) and the growth data provided by the various galaxy surveys in order to constrain the growth index ($$\\gamma $$ <math><mi>\u03b3</mi></math> ) of the linear matter perturbations. Considering a constant growth index we can put tight constraints, up to $$\\sim 10\\%$$ <math><mrow><mo>\u223c</mo><mn>10</mn><mo>%</mo></mrow></math>  accuracy, on $$\\gamma $$ <math><mi>\u03b3</mi></math> . Specifically, using the priors of the Dark Energy Survey and implementing a joint likelihood procedure between theoretical expectations and data we find that the best fit value is in between $$\\gamma =0.64\\pm 0.075$$ <math><mrow><mi>\u03b3</mi><mo>=</mo><mn>0.64</mn><mo>\u00b1</mo><mn>0.075</mn></mrow></math>  and $$0.65\\pm 0.063$$ <math><mrow><mn>0.65</mn><mo>\u00b1</mo><mn>0.063</mn></mrow></math> . On the other hand utilizing the Planck priors we obtain $$\\gamma =0.680\\pm 0.089$$ <math><mrow><mi>\u03b3</mi><mo>=</mo><mn>0.680</mn><mo>\u00b1</mo><mn>0.089</mn></mrow></math>  and $$0.690\\pm 0.071$$ <math><mrow><mn>0.690</mn><mo>\u00b1</mo><mn>0.071</mn></mrow></math> . This shows a small but non-zero deviation from General Relativity ($$\\gamma _{\\mathrm{GR}}\\approx 6/11$$ <math><mrow><msub><mi>\u03b3</mi><mi>GR</mi></msub><mo>\u2248</mo><mn>6</mn><mo>/</mo><mn>11</mn></mrow></math> ), nevertheless the confidence level is in the range $$\\sim 1.3-2\\sigma $$ <math><mrow><mo>\u223c</mo><mn>1.3</mn><mo>-</mo><mn>2</mn><mi>\u03c3</mi></mrow></math> . Moreover, we find that the estimated mass of the dark-matter halo in which LRGs survive lies in the interval $$\\sim 6.2 \\times 10^{12} h^{-1} M_{\\odot }$$ <math><mrow><mo>\u223c</mo><mn>6.2</mn><mo>\u00d7</mo><msup><mn>10</mn><mn>12</mn></msup><msup><mi>h</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msub><mi>M</mi><mo>\u2299</mo></msub></mrow></math>  and $$1.2 \\times 10^{13} h^{-1} M_{\\odot }$$ <math><mrow><mn>1.2</mn><mo>\u00d7</mo><msup><mn>10</mn><mn>13</mn></msup><msup><mi>h</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msub><mi>M</mi><mo>\u2299</mo></msub></mrow></math> , for the different bias models. Finally, allowing $$\\gamma $$ <math><mi>\u03b3</mi></math>  to evolve with redshift [Taylor expansion: $$\\gamma (z)=\\gamma _{0}+\\gamma _{1}z/(1+z)$$ <math><mrow><mi>\u03b3</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>\u03b3</mi><mn>0</mn></msub><mo>+</mo><msub><mi>\u03b3</mi><mn>1</mn></msub><mi>z</mi><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow></math> ] we find that the $$(\\gamma _{0},\\gamma _{1})$$ <math><mrow><mo>(</mo><msub><mi>\u03b3</mi><mn>0</mn></msub><mo>,</mo><msub><mi>\u03b3</mi><mn>1</mn></msub><mo>)</mo></mrow></math>  parameter solution space accommodates the GR prediction at $$\\sim 1.7-2.9\\sigma $$ <math><mrow><mo>\u223c</mo><mn>1.7</mn><mo>-</mo><mn>2.9</mn><mi>\u03c3</mi></mrow></math>  levels."
    }
  ], 
  "imprints": [
    {
      "date": "2020-05-18", 
      "publisher": "Springer"
    }
  ]
}
Published on:
18 May 2020
Publisher:
Springer
Published in:
European Physical Journal C , Volume 80 (2020)
Issue 3
Pages 1-9
DOI:
https://doi.org/10.1140/epjc/s10052-020-7770-8
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: