Searching for a $$D {\bar{D}}$$ DD¯ bound state with the $$\psi (3770) \rightarrow \gamma D^0 {\bar{D}}^0$$ ψ(3770)γD0D¯0 decay

Lianrong Dai (School of Science, Huzhou University, Huzhou, Zhejiang, 313000, China; Department of Physics, Liaoning Normal University, Dalian, 116029, China) ; Genaro Toledo (Instituto de Física, Universidad Nacional Autónoma de México, AP 20-364, Mexico City, Mexico; Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC Institutos de Investigación de Paterna, Aptdo.22085, Valencia, 46071, Spain) ; Eulogio Oset (Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC Institutos de Investigación de Paterna, Aptdo.22085, Valencia, 46071, Spain)

We perform a calculation of the mass distribution in the $$\psi (3770) \rightarrow \gamma D {\bar{D}}$$ ψ(3770)γDD¯ decay, studying both the $$D^+ D^- $$ D+D- and $$D^0 {\bar{D}}^0 $$ D0D¯0 decays. The electromagnetic interaction is such that the tree level amplitude is null for the neutral channel, which forces the $$\psi (3770) \rightarrow \gamma D^0 {\bar{D}}^0$$ ψ(3770)γD0D¯0 transition to go through a loop involving the $$D^+ D^- \rightarrow D^0 {\bar{D}}^0$$ D+D-D0D¯0 scattering amplitude. We take the results for this amplitude from a theoretical model that predicts a $$D {\bar{D}}$$ DD¯ bound state and find a $$D^0 {\bar{D}}^0 $$ D0D¯0 mass distribution in the decay drastically different than phase space. The rates obtained are relatively large and the experiment is easily feasible in the present BESIII facility. The performance of this experiment could provide an answer to the issue of this much searched for state, which is the analogue of the $$f_0(980)$$ f0(980) resonance.

{
  "_oai": {
    "updated": "2020-08-14T00:35:37Z", 
    "id": "oai:repo.scoap3.org:55003", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "School of Science, Huzhou University, Huzhou, Zhejiang, 313000, China", 
          "organization": "Huzhou University"
        }, 
        {
          "country": "China", 
          "value": "Department of Physics, Liaoning Normal University, Dalian, 116029, China", 
          "organization": "Liaoning Normal University"
        }
      ], 
      "surname": "Dai", 
      "email": "dailianrong68@126.com", 
      "full_name": "Dai, Lianrong", 
      "given_names": "Lianrong"
    }, 
    {
      "affiliations": [
        {
          "country": "Mexico", 
          "value": "Instituto de F\u00edsica, Universidad Nacional Aut\u00f3noma de M\u00e9xico, AP 20-364, Mexico City, Mexico", 
          "organization": "Universidad Nacional Aut\u00f3noma de M\u00e9xico"
        }, 
        {
          "country": "Spain", 
          "value": "Departamento de F\u00edsica Te\u00f3rica and IFIC, Centro Mixto Universidad de Valencia-CSIC Institutos de Investigaci\u00f3n de Paterna, Aptdo.22085, Valencia, 46071, Spain", 
          "organization": "Centro Mixto Universidad de Valencia-CSIC Institutos de Investigaci\u00f3n de Paterna"
        }
      ], 
      "surname": "Toledo", 
      "email": "toledo@fisica.unam.mx", 
      "full_name": "Toledo, Genaro", 
      "given_names": "Genaro"
    }, 
    {
      "affiliations": [
        {
          "country": "Spain", 
          "value": "Departamento de F\u00edsica Te\u00f3rica and IFIC, Centro Mixto Universidad de Valencia-CSIC Institutos de Investigaci\u00f3n de Paterna, Aptdo.22085, Valencia, 46071, Spain", 
          "organization": "Centro Mixto Universidad de Valencia-CSIC Institutos de Investigaci\u00f3n de Paterna"
        }
      ], 
      "surname": "Oset", 
      "email": "oset@ific.uv.es", 
      "full_name": "Oset, Eulogio", 
      "given_names": "Eulogio"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Searching for a $$D {\\bar{D}}$$ <math><mrow><mi>D</mi><mover><mrow><mi>D</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow></math>  bound state with the $$\\psi (3770) \\rightarrow \\gamma D^0 {\\bar{D}}^0$$ <math><mrow><mi>\u03c8</mi><mrow><mo>(</mo><mn>3770</mn><mo>)</mo></mrow><mo>\u2192</mo><mi>\u03b3</mi><msup><mi>D</mi><mn>0</mn></msup><msup><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mn>0</mn></msup></mrow></math>  decay"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-020-8058-8"
    }
  ], 
  "publication_info": [
    {
      "page_end": "8", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "80", 
      "artid": "s10052-020-8058-8", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "6"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-08-14T02:30:50.817625", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "49a9ee70ddc511eab30802163e01809a"
  }, 
  "page_nr": [
    8
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2020"
    }
  ], 
  "control_number": "55003", 
  "record_creation_date": "2020-07-08T21:24:29.500681", 
  "_files": [
    {
      "checksum": "md5:520614118077b84a7130926e79c60f25", 
      "filetype": "xml", 
      "bucket": "50737b5f-4885-41f9-92a1-bcd086d6ea6b", 
      "version_id": "9a3ac8ca-0d58-4b95-890e-774b2cbcbe87", 
      "key": "10.1140/epjc/s10052-020-8058-8.xml", 
      "size": 23759
    }, 
    {
      "checksum": "md5:995a2240b3f4f1761b3b63c77510f182", 
      "filetype": "pdf/a", 
      "bucket": "50737b5f-4885-41f9-92a1-bcd086d6ea6b", 
      "version_id": "32da7730-1882-484e-bff9-0ceec1549392", 
      "key": "10.1140/epjc/s10052-020-8058-8_a.pdf", 
      "size": 591643
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph"
      ], 
      "value": "2004.05204"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We perform a calculation of the mass distribution in the $$\\psi (3770) \\rightarrow \\gamma D {\\bar{D}}$$ <math><mrow><mi>\u03c8</mi><mo>(</mo><mn>3770</mn><mo>)</mo><mo>\u2192</mo><mi>\u03b3</mi><mi>D</mi><mover><mrow><mi>D</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow></math>  decay, studying both the $$D^+ D^- $$ <math><mrow><msup><mi>D</mi><mo>+</mo></msup><msup><mi>D</mi><mo>-</mo></msup></mrow></math>  and $$D^0 {\\bar{D}}^0 $$ <math><mrow><msup><mi>D</mi><mn>0</mn></msup><msup><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mn>0</mn></msup></mrow></math>  decays. The electromagnetic interaction is such that the tree level amplitude is null for the neutral channel, which forces the $$\\psi (3770) \\rightarrow \\gamma D^0 {\\bar{D}}^0$$ <math><mrow><mi>\u03c8</mi><mrow><mo>(</mo><mn>3770</mn><mo>)</mo></mrow><mo>\u2192</mo><mi>\u03b3</mi><msup><mi>D</mi><mn>0</mn></msup><msup><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mn>0</mn></msup></mrow></math>  transition to go through a loop involving the $$D^+ D^- \\rightarrow D^0 {\\bar{D}}^0$$ <math><mrow><msup><mi>D</mi><mo>+</mo></msup><msup><mi>D</mi><mo>-</mo></msup><mo>\u2192</mo><msup><mi>D</mi><mn>0</mn></msup><msup><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mn>0</mn></msup></mrow></math>  scattering amplitude. We take the results for this amplitude from a theoretical model that predicts a $$D {\\bar{D}}$$ <math><mrow><mi>D</mi><mover><mrow><mi>D</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow></math>  bound state and find a $$D^0 {\\bar{D}}^0 $$ <math><mrow><msup><mi>D</mi><mn>0</mn></msup><msup><mrow><mover><mrow><mi>D</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mn>0</mn></msup></mrow></math>  mass distribution in the decay drastically different than phase space. The rates obtained are relatively large and the experiment is easily feasible in the present BESIII facility. The performance of this experiment could provide an answer to the issue of this much searched for state, which is the analogue of the $$f_0(980)$$ <math><mrow><msub><mi>f</mi><mn>0</mn></msub><mrow><mo>(</mo><mn>980</mn><mo>)</mo></mrow></mrow></math>  resonance."
    }
  ], 
  "imprints": [
    {
      "date": "2020-06-08", 
      "publisher": "Springer"
    }
  ]
}
Published on:
08 June 2020
Publisher:
Springer
Published in:
European Physical Journal C , Volume 80 (2020)
Issue 6
Pages 1-8
DOI:
https://doi.org/10.1140/epjc/s10052-020-8058-8
arXiv:
2004.05204
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: