Functional methods for Heavy Quark Effective Theory

Timothy Cohen (Institute for Fundamental Science, Department of Physics, University of Oregon, Eugene, OR, 97403, USA) ; Marat Freytsis (NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA) ; Xiaochuan Lu (Institute for Fundamental Science, Department of Physics, University of Oregon, Eugene, OR, 97403, USA)

We use functional methods to compute one-loop effects in Heavy Quark Effective Theory. The covariant derivative expansion technique facilitates the efficient extraction of matching coefficients and renormalization group evolution equations. This paper pro- vides the first demonstration that such calculations can be performed through the algebraic evaluation of the path integral for the class of effective field theories that are (i) constructed using a non-trivial one-to-many mode decomposition of the UV theory, and (ii) valid for non-relativistic kinematics. We discuss the interplay between operators that appear at intermediate steps and the constraints imposed by the residual Lorentz symmetry that is encoded as reparameterization invariance within the effective description. The tools presented here provide a systematic approach for computing corrections to higher order in the heavy mass expansion; precision applications include predictions for experimental data and connections to theoretical tests via lattice QCD. A set of pedagogical appendices comprehensively reviews modern approaches to performing functional calculations algebraically, and derives contributions from a term with open covariant derivatives for the first time.

{
  "_oai": {
    "updated": "2020-09-24T01:05:57Z", 
    "id": "oai:repo.scoap3.org:55135", 
    "sets": [
      "JHEP"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Institute for Fundamental Science, Department of Physics, University of Oregon, Eugene, OR, 97403, USA", 
          "organization": "University of Oregon"
        }
      ], 
      "surname": "Cohen", 
      "email": "tcohen@uoregon.edu", 
      "full_name": "Cohen, Timothy", 
      "given_names": "Timothy"
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA", 
          "organization": "Rutgers University"
        }
      ], 
      "surname": "Freytsis", 
      "email": "marat.freytsis@rutgers.edu", 
      "full_name": "Freytsis, Marat", 
      "given_names": "Marat"
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Institute for Fundamental Science, Department of Physics, University of Oregon, Eugene, OR, 97403, USA", 
          "organization": "University of Oregon"
        }
      ], 
      "surname": "Lu", 
      "email": "xlu@uoregon.edu", 
      "full_name": "Lu, Xiaochuan", 
      "given_names": "Xiaochuan"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Functional methods for Heavy Quark Effective Theory"
    }
  ], 
  "dois": [
    {
      "value": "10.1007/JHEP06(2020)164"
    }
  ], 
  "publication_info": [
    {
      "page_end": "83", 
      "journal_title": "Journal of High Energy Physics", 
      "material": "article", 
      "journal_volume": "2020", 
      "artid": "JHEP06(2020)164", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "6"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-09-24T02:31:46.060775", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "1499bd02fdfd11eabd0e02163e01809a"
  }, 
  "page_nr": [
    83
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/3.0", 
      "license": "CC-BY-3.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2020"
    }
  ], 
  "control_number": "55135", 
  "record_creation_date": "2020-07-08T23:15:28.964991", 
  "_files": [
    {
      "checksum": "md5:92554c84f42102f9d8e49b304f971bd1", 
      "filetype": "xml", 
      "bucket": "7f739a39-e884-48bc-8f02-131d7f70be09", 
      "version_id": "6cae755a-55a6-4733-8729-05439b21ff6b", 
      "key": "10.1007/JHEP06(2020)164.xml", 
      "size": 11724
    }, 
    {
      "checksum": "md5:d744f7ff97b9cbb71c3485240b622748", 
      "filetype": "pdf/a", 
      "bucket": "7f739a39-e884-48bc-8f02-131d7f70be09", 
      "version_id": "52be4d63-6c33-4cf5-9215-0f4bf9fb29fb", 
      "key": "10.1007/JHEP06(2020)164_a.pdf", 
      "size": 1011957
    }
  ], 
  "collections": [
    {
      "primary": "Journal of High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph"
      ], 
      "value": "1912.08814"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We use functional methods to compute one-loop effects in Heavy Quark Effective Theory. The covariant derivative expansion technique facilitates the efficient extraction of matching coefficients and renormalization group evolution equations. This paper pro- vides the first demonstration that such calculations can be performed through the algebraic evaluation of the path integral for the class of effective field theories that are (i) constructed using a non-trivial one-to-many mode decomposition of the UV theory, and (ii) valid for non-relativistic kinematics. We discuss the interplay between operators that appear at intermediate steps and the constraints imposed by the residual Lorentz symmetry that is encoded as reparameterization invariance within the effective description. The tools presented here provide a systematic approach for computing corrections to higher order in the heavy mass expansion; precision applications include predictions for experimental data and connections to theoretical tests via lattice QCD. A set of pedagogical appendices comprehensively reviews modern approaches to performing functional calculations algebraically, and derives contributions from a term with open covariant derivatives for the first time."
    }
  ], 
  "imprints": [
    {
      "date": "2020-06-26", 
      "publisher": "Springer"
    }
  ]
}
Published on:
26 June 2020
Publisher:
Springer
Published in:
Journal of High Energy Physics , Volume 2020 (2020)
Issue 6
Pages 1-83
DOI:
https://doi.org/10.1007/JHEP06(2020)164
arXiv:
1912.08814
Copyrights:
The Author(s)
Licence:
CC-BY-3.0

Fulltext files: