Dynamically and thermodynamically stable black holes in Einstein-Maxwell-dilaton gravity

Dumitru Astefanesei (Pontificia Universidad Católica de Valparaíso, Instituto de Física, Av. Brasil, Valparaíso, 2950, Chile) ; Jose Blázquez-Salcedo (Institut für Physik, Universität Oldenburg, Postfach 2503, Oldenburg, D-26111, Germany) ; Carlos Herdeiro (Departamento de Matemática da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, Aveiro, 3810-183, Portugal) ; Eugen Radu (Departamento de Matemática da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, Aveiro, 3810-183, Portugal) ; Nicolas Sanchis-Gual (Centro de Astrofísica e Gravitacão — CENTRA, Departamento de Física, Instituto Superior Técnico — IST, Universidade de Lisboa — UL, Avenida Rovisco Pais 1, Lisbon, 1049-001, Portugal)

We consider Einstein-Maxwell-dilaton gravity with the non-minimal exponential coupling between the dilaton and the Maxwell field emerging from low energy heterotic string theory. The dilaton is endowed with a potential that originates from an electromagnetic Fayet-Iliopoulos (FI) term in N $$ \mathcal{N} $$ = 2 extended supergravity in four spacetime dimensions. For the case we are interested in, this potential introduces a single parameter α. When α → 0, the static black holes (BHs) of the model are the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) solutions. When α → ∞, the BHs become the standard Reissner-Nordström (RN) solutions of electrovacuum General Relativity. The BH solutions for finite non-zero α interpolate between these two families. In this case, the dilaton potential regularizes the extremal limit of the GMGHS solution yielding a set of zero temperature BHs with a near horizon AdS 2 × S 2 geometry. We show that, in the neighborhood of these extremal solutions, there is a subset of BHs that are dynamically and thermodynamically stable, all of which have charge to mass ratio larger than unity. By dynamical stability we mean that no growing quasi-normal modes are found; thus they are stable against linear perturbations (spherical and non-spherical). Moreover, non-linear numerical evolutions lend support to their non-linear stability. By thermodynamical stability we mean the BHs are stable both in the canonical and grand-canonical ensemble. In particular, both the specific heat at constant charge and the isothermal permittivity are positive. This is not possible for RN and GMGHS BHs. We discuss the different thermodynamical phases for the BHs in this model and comment on what may allow the existence of both dynamically and thermodynamically stable BHs.

{
  "_oai": {
    "updated": "2020-10-25T00:46:47Z", 
    "id": "oai:repo.scoap3.org:55320", 
    "sets": [
      "JHEP"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Chile", 
          "value": "Pontificia Universidad Cat\u00f3lica de Valpara\u00edso, Instituto de F\u00edsica, Av. Brasil, Valpara\u00edso, 2950, Chile", 
          "organization": "Instituto de F\u00edsica"
        }
      ], 
      "surname": "Astefanesei", 
      "email": "dumitru.astefanesei@pucv.cl", 
      "full_name": "Astefanesei, Dumitru", 
      "given_names": "Dumitru"
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Institut f\u00fcr Physik, Universit\u00e4t Oldenburg, Postfach 2503, Oldenburg, D-26111, Germany", 
          "organization": "Universit\u00e4t Oldenburg"
        }
      ], 
      "surname": "Bl\u00e1zquez-Salcedo", 
      "email": "jose.blazquez.salcedo@uni-oldenburg.de", 
      "full_name": "Bl\u00e1zquez-Salcedo, Jose", 
      "given_names": "Jose"
    }, 
    {
      "affiliations": [
        {
          "country": "Portugal", 
          "value": "Departamento de Matem\u00e1tica da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, Aveiro, 3810-183, Portugal", 
          "organization": "Departamento de Matem\u00e1tica da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA)"
        }
      ], 
      "surname": "Herdeiro", 
      "email": "herdeiro@ua.pt", 
      "full_name": "Herdeiro, Carlos", 
      "given_names": "Carlos"
    }, 
    {
      "affiliations": [
        {
          "country": "Portugal", 
          "value": "Departamento de Matem\u00e1tica da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, Aveiro, 3810-183, Portugal", 
          "organization": "Departamento de Matem\u00e1tica da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA)"
        }
      ], 
      "surname": "Radu", 
      "email": "eugen.radu@ua.pt", 
      "full_name": "Radu, Eugen", 
      "given_names": "Eugen"
    }, 
    {
      "affiliations": [
        {
          "country": "Portugal", 
          "value": "Centro de Astrof\u00edsica e Gravitac\u00e3o \u2014 CENTRA, Departamento de F\u00edsica, Instituto Superior T\u00e9cnico \u2014 IST, Universidade de Lisboa \u2014 UL, Avenida Rovisco Pais 1, Lisbon, 1049-001, Portugal", 
          "organization": "Universidade de Lisboa \u2014 UL"
        }
      ], 
      "surname": "Sanchis-Gual", 
      "email": "nicolas.sanchis@tecnico.ulisboa.pt", 
      "full_name": "Sanchis-Gual, Nicolas", 
      "given_names": "Nicolas"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Dynamically and thermodynamically stable black holes in Einstein-Maxwell-dilaton gravity"
    }
  ], 
  "dois": [
    {
      "value": "10.1007/JHEP07(2020)063"
    }
  ], 
  "publication_info": [
    {
      "page_end": "29", 
      "journal_title": "Journal of High Energy Physics", 
      "material": "article", 
      "journal_volume": "2020", 
      "artid": "JHEP07(2020)063", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "7"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-10-25T02:31:17.857752", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "37646868165911ebbd0e02163e01809a"
  }, 
  "page_nr": [
    29
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/3.0", 
      "license": "CC-BY-3.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2020"
    }
  ], 
  "control_number": "55320", 
  "record_creation_date": "2020-07-10T15:08:32.218021", 
  "_files": [
    {
      "checksum": "md5:886e5f307776509ce62b239a03e83a7f", 
      "filetype": "xml", 
      "bucket": "f87b8229-9459-45f6-9e2f-b89b2d583de9", 
      "version_id": "aa534697-9351-4876-8dc4-40335f2a362b", 
      "key": "10.1007/JHEP07(2020)063.xml", 
      "size": 14972
    }, 
    {
      "checksum": "md5:4d84b475879fd77aaa09e8f374615df8", 
      "filetype": "pdf/a", 
      "bucket": "f87b8229-9459-45f6-9e2f-b89b2d583de9", 
      "version_id": "4d6a45ec-316a-4a31-907d-6b5e4a813105", 
      "key": "10.1007/JHEP07(2020)063_a.pdf", 
      "size": 1472501
    }
  ], 
  "collections": [
    {
      "primary": "Journal of High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "gr-qc", 
        "hep-th"
      ], 
      "value": "1912.02192"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We consider Einstein-Maxwell-dilaton gravity with the non-minimal exponential coupling between the dilaton and the Maxwell field emerging from low energy heterotic string theory. The dilaton is endowed with a potential that originates from an electromagnetic Fayet-Iliopoulos (FI) term in   <math> <mi>N</mi> </math>  $$ \\mathcal{N} $$  = 2 extended supergravity in four spacetime dimensions. For the case we are interested in, this potential introduces a single parameter \u03b1. When \u03b1 \u2192 0, the static black holes (BHs) of the model are the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) solutions. When \u03b1 \u2192 \u221e, the BHs become the standard Reissner-Nordstr\u00f6m (RN) solutions of electrovacuum General Relativity. The BH solutions for finite non-zero \u03b1 interpolate between these two families. In this case, the dilaton potential regularizes the extremal limit of the GMGHS solution yielding a set of zero temperature BHs with a near horizon AdS 2 \u00d7 S 2 geometry. We show that, in the neighborhood of these extremal solutions, there is a subset of BHs that are dynamically and thermodynamically stable, all of which have charge to mass ratio larger than unity. By dynamical stability we mean that no growing quasi-normal modes are found; thus they are stable against linear perturbations (spherical and non-spherical). Moreover, non-linear numerical evolutions lend support to their non-linear stability. By thermodynamical stability we mean the BHs are stable both in the canonical and grand-canonical ensemble. In particular, both the specific heat at constant charge and the isothermal permittivity are positive. This is not possible for RN and GMGHS BHs. We discuss the different thermodynamical phases for the BHs in this model and comment on what may allow the existence of both dynamically and thermodynamically stable BHs."
    }
  ], 
  "imprints": [
    {
      "date": "2020-07-09", 
      "publisher": "Springer"
    }
  ]
}
Published on:
09 July 2020
Publisher:
Springer
Published in:
Journal of High Energy Physics , Volume 2020 (2020)
Issue 7
Pages 1-29
DOI:
https://doi.org/10.1007/JHEP07(2020)063
arXiv:
1912.02192
Copyrights:
The Author(s)
Licence:
CC-BY-3.0

Fulltext files: