Excitation Function of Initial Temperature of Heavy Flavor Quarkonium Emission Source in High Energy Collisions

Fu-Hu Liu (Institute of Theoretical Physics & State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China) ; Qi Wang (Institute of Theoretical Physics & State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China)

The transverse momentum spectra of J/ψ, ψ2S, and YnS,n=1,2,3 produced in proton-proton p+p, proton-antiproton p+p¯, proton-lead p+Pb, gold-gold Au+Au, and lead-lead (Pb+Pb) collisions over a wide energy range are analyzed by the (two-component) Erlang distribution, the Hagedorn function (the inverse power-law), and the Tsallis-Levy function. The initial temperature is obtained from the color string percolation model from the fit by the (two-component) Erlang distribution in the framework of a multisource thermal model. The excitation functions of several parameters such as the mean transverse momentum and initial temperature increase from 39 GeV to 13 TeV, which is considered in this work. The mean transverse momentum and initial temperature decrease (increase slightly or do not change significantly) with the increase of rapidity (centrality). Meanwhile, the mean transverse momentum of YnS,n=1,2,3 is larger than that of J/ψ and ψ2S, and the initial temperature for YnS,n=1,2,3 emission is higher than that for J/ψ and ψ2S emission, which shows a mass-dependent behavior.

{
  "_oai": {
    "updated": "2020-08-18T00:15:18Z", 
    "id": "oai:repo.scoap3.org:56364", 
    "sets": [
      "AHEP"
    ]
  }, 
  "authors": [
    {
      "surname": "Liu", 
      "given_names": "Fu-Hu", 
      "raw_name": "Liu, Fu-Hu", 
      "affiliations": [
        {
          "country": "China", 
          "value": "Institute of Theoretical Physics & State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, China"
        }, 
        {
          "country": "China", 
          "value": "Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China"
        }
      ], 
      "full_name": "Liu, Fu-Hu", 
      "orcid": "0000-0002-2261-6899"
    }, 
    {
      "raw_name": "Wang, Qi", 
      "affiliations": [
        {
          "country": "China", 
          "value": "Institute of Theoretical Physics & State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, China"
        }, 
        {
          "country": "China", 
          "value": "Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China"
        }
      ], 
      "surname": "Wang", 
      "given_names": "Qi", 
      "full_name": "Wang, Qi"
    }
  ], 
  "titles": [
    {
      "source": "Hindawi", 
      "title": "Excitation Function of Initial Temperature of Heavy Flavor Quarkonium Emission Source in High Energy Collisions"
    }
  ], 
  "dois": [
    {
      "value": "10.1155/2020/5031494"
    }
  ], 
  "publication_info": [
    {
      "page_start": "5031494", 
      "journal_title": "Advances in High Energy Physics", 
      "year": 2020
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-08-18T02:15:02.269967", 
    "source": "Hindawi", 
    "method": "Hindawi", 
    "submission_number": "db03dfd2e0e711eab30802163e01809a"
  }, 
  "page_nr": [
    31
  ], 
  "license": [
    {
      "url": "http://creativecommons.org/licenses/by/3.0/", 
      "license": "CC-BY-3.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Copyright \u00a9 2020 Qi Wang and Fu-Hu Liu.", 
      "year": "2020"
    }
  ], 
  "control_number": "56364", 
  "record_creation_date": "2020-08-17T17:15:07.147938", 
  "_files": [
    {
      "checksum": "md5:fb2e74a8524ffd5a6bf7214285d59db7", 
      "filetype": "pdf", 
      "bucket": "78fb47a4-bd89-40c9-8359-29d1d019a24f", 
      "version_id": "3f995ed8-9b8f-4d76-b71a-92230bd48a42", 
      "key": "10.1155/2020/5031494.pdf", 
      "size": 3721708
    }, 
    {
      "checksum": "md5:25785e68a5d4a28f747e01394b102a85", 
      "filetype": "pdf/a", 
      "bucket": "78fb47a4-bd89-40c9-8359-29d1d019a24f", 
      "version_id": "16ee528f-c331-4d9c-8412-2f9a05436812", 
      "key": "10.1155/2020/5031494.a.pdf", 
      "size": 3522846
    }, 
    {
      "checksum": "md5:cd77f9bf30ceab78c5d5b7cee003d52a", 
      "filetype": "xml", 
      "bucket": "78fb47a4-bd89-40c9-8359-29d1d019a24f", 
      "version_id": "2493ddf7-3da4-443d-880f-a1d24fb67c00", 
      "key": "10.1155/2020/5031494.xml", 
      "size": 691368
    }
  ], 
  "collections": [
    {
      "primary": "Advances in High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph", 
        "hep-ex", 
        "nucl-ex", 
        "nucl-th"
      ], 
      "value": "2005.04940"
    }
  ], 
  "abstracts": [
    {
      "source": "Hindawi", 
      "value": "The transverse momentum spectra of <math id=\"M1\"><mi>J</mi><mo>/</mo><mi>\u03c8</mi></math>, <math id=\"M2\"><mi>\u03c8</mi><mfenced><mrow><mn>2</mn><mi>S</mi></mrow></mfenced></math>, and <math id=\"M3\"><mi>Y</mi><mfenced><mrow><mi>n</mi><mi>S</mi><mo>,</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></mfenced></math> produced in proton-proton <math id=\"M4\"><mfenced><mrow><mi>p</mi><mo>+</mo><mi>p</mi></mrow></mfenced></math>, proton-antiproton <math id=\"M5\"><mfenced><mrow><mi>p</mi><mo>+</mo><mover><mi>p</mi><mo>\u00af</mo></mover></mrow></mfenced></math>, proton-lead <math id=\"M6\"><mfenced><mrow><mi>p</mi><mo>+</mo><mtext>Pb</mtext></mrow></mfenced></math>, gold-gold <math id=\"M7\"><mfenced><mrow><mtext>Au</mtext><mo>+</mo><mtext>Au</mtext></mrow></mfenced></math>, and lead-lead (<math id=\"M8\"><mtext>Pb</mtext><mo>+</mo><mtext>Pb</mtext></math>) collisions over a wide energy range are analyzed by the (two-component) Erlang distribution, the Hagedorn function (the inverse power-law), and the Tsallis-Levy function. The initial temperature is obtained from the color string percolation model from the fit by the (two-component) Erlang distribution in the framework of a multisource thermal model. The excitation functions of several parameters such as the mean transverse momentum and initial temperature increase from 39 GeV to 13 TeV, which is considered in this work. The mean transverse momentum and initial temperature decrease (increase slightly or do not change significantly) with the increase of rapidity (centrality). Meanwhile, the mean transverse momentum of <math id=\"M9\"><mi>Y</mi><mfenced><mrow><mi>n</mi><mi>S</mi><mo>,</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></mfenced></math> is larger than that of <math id=\"M10\"><mi>J</mi><mo>/</mo><mi>\u03c8</mi></math> and <math id=\"M11\"><mi>\u03c8</mi><mfenced><mrow><mn>2</mn><mi>S</mi></mrow></mfenced></math>, and the initial temperature for <math id=\"M12\"><mi>Y</mi><mfenced><mrow><mi>n</mi><mi>S</mi><mo>,</mo><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></mfenced></math> emission is higher than that for <math id=\"M13\"><mi>J</mi><mo>/</mo><mi>\u03c8</mi></math> and <math id=\"M14\"><mi>\u03c8</mi><mfenced><mrow><mn>2</mn><mi>S</mi></mrow></mfenced></math> emission, which shows a mass-dependent behavior."
    }
  ], 
  "imprints": [
    {
      "date": "2020-08-17", 
      "publisher": "Hindawi"
    }
  ]
}
Published on:
17 August 2020
Publisher:
Hindawi
Published in:
Advances in High Energy Physics (2020)

DOI:
https://doi.org/10.1155/2020/5031494
arXiv:
2005.04940
Copyrights:
Copyright © 2020 Qi Wang and Fu-Hu Liu.
Licence:
CC-BY-3.0

Fulltext files: