Gravitational imprints from heavy Kaluza-Klein resonances

Eugenio Megías (Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain) ; Germano Nardini (Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway) ; Mariano Quirós (Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra (Barcelona) Spain)

We systematically study the holographic phase transition of the radion field in a five-dimensional warped model which includes a scalar potential with a powerlike behavior. We consider Kaluza-Klein (KK) resonances with masses mKK at the TeV scale or beyond. The backreaction of the radion field on the gravitational metric is taken into account by using the superpotential formalism. The confinement/deconfinement first order phase transition leads to a gravitational wave stochastic background which mainly depends on the scale mKK and the number of colors, N, in the dual theory. Its power spectrum peaks at a frequency that depends on the amount of tuning required in the electroweak sector. It turns out that the present and forthcoming gravitational wave observatories can probe scenarios where the KK resonances are very heavy. Current aLIGO data already rule out vector boson KK resonances with masses in the interval mKK(110)×105 TeV. Future gravitational experiments will be sensitive to resonances with masses mKK105 TeV (LISA), 108 TeV (aLIGO Design) and 109 TeV (ET). Finally, we also find that the big bang nucleosynthesis bound in the frequency spectrum turns into a lower bound for the nucleation temperature as Tn104NmKK.

{
  "_oai": {
    "updated": "2021-08-29T11:33:37Z", 
    "id": "oai:repo.scoap3.org:56826", 
    "sets": [
      "PRD"
    ]
  }, 
  "authors": [
    {
      "raw_name": "Eugenio Meg\u00edas", 
      "affiliations": [
        {
          "country": "Spain", 
          "value": "Departamento de F\u00edsica At\u00f3mica, Molecular y Nuclear and Instituto Carlos I de F\u00edsica Te\u00f3rica y Computacional, Universidad de Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain"
        }
      ], 
      "surname": "Meg\u00edas", 
      "given_names": "Eugenio", 
      "full_name": "Meg\u00edas, Eugenio"
    }, 
    {
      "raw_name": "Germano Nardini", 
      "affiliations": [
        {
          "country": "Norway", 
          "value": "Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway"
        }
      ], 
      "surname": "Nardini", 
      "given_names": "Germano", 
      "full_name": "Nardini, Germano"
    }, 
    {
      "raw_name": "Mariano Quir\u00f3s", 
      "affiliations": [
        {
          "country": "Spain", 
          "value": "Institut de F\u00edsica d\u2019Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra (Barcelona) Spain"
        }
      ], 
      "surname": "Quir\u00f3s", 
      "given_names": "Mariano", 
      "full_name": "Quir\u00f3s, Mariano"
    }
  ], 
  "titles": [
    {
      "source": "APS", 
      "title": "Gravitational imprints from heavy Kaluza-Klein resonances"
    }
  ], 
  "dois": [
    {
      "value": "10.1103/PhysRevD.102.055004"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "102", 
      "journal_title": "Physical Review D", 
      "material": "article", 
      "journal_issue": "5", 
      "year": 2020
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2021-08-25T10:42:16.764078", 
    "source": "APS", 
    "method": "APS", 
    "submission_number": "810b323c058f11ecb53772fd3742099d"
  }, 
  "page_nr": [
    11
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/4.0/", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Published by the American Physical Society", 
      "year": "2020"
    }
  ], 
  "control_number": "56826", 
  "record_creation_date": "2020-09-08T18:30:04.335914", 
  "_files": [
    {
      "checksum": "md5:bd4b68e6c06b1e91b783a06ac7398e54", 
      "filetype": "pdf", 
      "bucket": "547084d7-6d1c-45d4-b059-628beb1518f3", 
      "version_id": "1d1d79b5-c4c5-4278-8f65-b8ed31068536", 
      "key": "10.1103/PhysRevD.102.055004.pdf", 
      "size": 839796
    }, 
    {
      "checksum": "md5:0f8bab9f7fc3b1e373d3ff72019f12ca", 
      "filetype": "xml", 
      "bucket": "547084d7-6d1c-45d4-b059-628beb1518f3", 
      "version_id": "3ac7b859-4f31-4cff-86f7-aee55286533c", 
      "key": "10.1103/PhysRevD.102.055004.xml", 
      "size": 219884
    }
  ], 
  "collections": [
    {
      "primary": "HEP"
    }, 
    {
      "primary": "Citeable"
    }, 
    {
      "primary": "Published"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph", 
        "gr-qc", 
        "hep-th"
      ], 
      "value": "2005.04127"
    }
  ], 
  "abstracts": [
    {
      "source": "APS", 
      "value": "We systematically study the holographic phase transition of the radion field in a five-dimensional warped model which includes a scalar potential with a powerlike behavior. We consider Kaluza-Klein (KK) resonances with masses <math><msub><mi>m</mi><mrow><mi>KK</mi></mrow></msub></math> at the TeV scale or beyond. The backreaction of the radion field on the gravitational metric is taken into account by using the superpotential formalism. The confinement/deconfinement first order phase transition leads to a gravitational wave stochastic background which mainly depends on the scale <math><msub><mi>m</mi><mrow><mi>KK</mi></mrow></msub></math> and the number of colors, <math><mi>N</mi></math>, in the dual theory. Its power spectrum peaks at a frequency that depends on the amount of tuning required in the electroweak sector. It turns out that the present and forthcoming gravitational wave observatories can probe scenarios where the KK resonances are very heavy. Current aLIGO data already rule out vector boson KK resonances with masses in the interval <math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>KK</mi></mrow></msub><mo>\u223c</mo><mo>(</mo><mn>1</mn><mi>\u2013</mi><mn>10</mn><mo>)</mo><mo>\u00d7</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup><mtext> </mtext><mtext> </mtext><mi>TeV</mi></mrow></math>. Future gravitational experiments will be sensitive to resonances with masses <math><msub><mi>m</mi><mrow><mi>KK</mi></mrow></msub><mo>\u2272</mo><msup><mn>10</mn><mn>5</mn></msup><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math> (LISA), <math><msup><mn>10</mn><mn>8</mn></msup><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math> (aLIGO Design) and <math><msup><mn>10</mn><mn>9</mn></msup><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math> (ET). Finally, we also find that the big bang nucleosynthesis bound in the frequency spectrum turns into a lower bound for the nucleation temperature as <math><msub><mi>T</mi><mi>n</mi></msub><mo>\u2273</mo><msup><mn>10</mn><mrow><mo>\u2212</mo><mn>4</mn></mrow></msup><msqrt><mi>N</mi></msqrt><msub><mi>m</mi><mrow><mi>KK</mi></mrow></msub></math>."
    }
  ], 
  "imprints": [
    {
      "date": "2020-09-08", 
      "publisher": "APS"
    }
  ]
}
Published on:
08 September 2020
Publisher:
APS
Published in:
Physical Review D , Volume 102 (2020)
Issue 5
DOI:
https://doi.org/10.1103/PhysRevD.102.055004
arXiv:
2005.04127
Copyrights:
Published by the American Physical Society
Licence:
CC-BY-4.0

Fulltext files: