Realization of the minimal extended seesaw mechanism and the TM 2 type neutrino mixing

R. Krishnan (Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India) ; Ananya Mukherjee (Physical Research Laboratory, Ahmedabad, 380009, India) ; Srubabati Goswami (Physical Research Laboratory, Ahmedabad, 380009, India)

We construct a neutrino mass model based on the flavour symmetry group A 4 × C 4 × C 6 × C 2 which accommodates a light sterile neutrino in the minimal extended seesaw (MES) scheme. Besides the flavour symmetry, we introduce a U(1) gauge symmetry in the sterile sector and also impose CP symmetry. The vacuum alignments of the scalar fields in the model spontaneously break these symmetries and lead to the construction of the fermion mass matrices. With the help of the MES formulas, we extract the light neutrino masses and the mixing observables. In the active neutrino sector, we obtain the TM2 mixing pattern with non-zero reactor angle and broken μ-τ reflection symmetry. We express all the active and the sterile oscillation observables in terms of only four real model parameters. Using this highly constrained scenario we predict sin 2 θ 23 = 0.545 0.004 + 0.003 , sin δ = 0.911 0.005 + 0.006 , U e 4 2 = 0.029 0.008 + 0.009 , U μ 4 2 = 0.010 0.003 + 0.003 and U τ 4 2 = 0.006 0.002 + 0.002 $$ {\sin}^2{\theta}_{23}={0.545}_{-0.004}^{+0.003},\sin \delta =-{0.911}_{-0.005}^{+0.006},{\left|{U}_{e4}\right|}^2={0.029}_{-0.008}^{+0.009},{\left|{U}_{\mu 4}\right|}^2={0.010}_{-0.003}^{+0.003}\kern0.5em \mathrm{and}\kern0.5em {\left|{U}_{\tau 4}\right|}^2={0.006}_{-0.002}^{+0.002} $$ which are consistent with the current data.

{
  "_oai": {
    "updated": "2021-01-26T00:27:38Z", 
    "id": "oai:repo.scoap3.org:56848", 
    "sets": [
      "JHEP"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "India", 
          "value": "Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India", 
          "organization": "Saha Institute of Nuclear Physics"
        }
      ], 
      "surname": "Krishnan", 
      "email": "krishnan.rama@saha.ac.in", 
      "full_name": "Krishnan, R.", 
      "given_names": "R."
    }, 
    {
      "affiliations": [
        {
          "country": "India", 
          "value": "Physical Research Laboratory, Ahmedabad, 380009, India", 
          "organization": "Physical Research Laboratory"
        }
      ], 
      "surname": "Mukherjee", 
      "email": "ananya@prl.res.in", 
      "full_name": "Mukherjee, Ananya", 
      "given_names": "Ananya"
    }, 
    {
      "affiliations": [
        {
          "country": "India", 
          "value": "Physical Research Laboratory, Ahmedabad, 380009, India", 
          "organization": "Physical Research Laboratory"
        }
      ], 
      "surname": "Goswami", 
      "email": "sruba@prl.res.in", 
      "full_name": "Goswami, Srubabati", 
      "given_names": "Srubabati"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Realization of the minimal extended seesaw mechanism and the TM 2 type neutrino mixing"
    }
  ], 
  "dois": [
    {
      "value": "10.1007/JHEP09(2020)050"
    }
  ], 
  "publication_info": [
    {
      "page_end": "27", 
      "journal_title": "Journal of High Energy Physics", 
      "material": "article", 
      "journal_volume": "2020", 
      "artid": "JHEP09(2020)050", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "9"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-12-25T01:31:00.210328", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "5299df22464811ebbd0e02163e01809a"
  }, 
  "page_nr": [
    27
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2020"
    }
  ], 
  "control_number": "56848", 
  "record_creation_date": "2020-09-09T08:30:41.304565", 
  "_files": [
    {
      "checksum": "md5:138dce87661e1d96d0fe3720927fffbc", 
      "filetype": "xml", 
      "bucket": "5a40ea69-8906-4db7-87dd-db6c2fd622ed", 
      "version_id": "0dd8c08f-b246-43ad-b553-fb069431ecf9", 
      "key": "10.1007/JHEP09(2020)050.xml", 
      "size": 18200
    }, 
    {
      "checksum": "md5:8ab3378d56a1786abd1824465933e5cf", 
      "filetype": "pdf/a", 
      "bucket": "5a40ea69-8906-4db7-87dd-db6c2fd622ed", 
      "version_id": "fb8810cd-801f-4cbd-987e-901fd7291fe1", 
      "key": "10.1007/JHEP09(2020)050_a.pdf", 
      "size": 5327835
    }
  ], 
  "collections": [
    {
      "primary": "Journal of High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph"
      ], 
      "value": "2001.07388"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We construct a neutrino mass model based on the flavour symmetry group A 4 \u00d7 C 4 \u00d7 C 6 \u00d7 C 2 which accommodates a light sterile neutrino in the minimal extended seesaw (MES) scheme. Besides the flavour symmetry, we introduce a U(1) gauge symmetry in the sterile sector and also impose CP symmetry. The vacuum alignments of the scalar fields in the model spontaneously break these symmetries and lead to the construction of the fermion mass matrices. With the help of the MES formulas, we extract the light neutrino masses and the mixing observables. In the active neutrino sector, we obtain the TM2 mixing pattern with non-zero reactor angle and broken \u03bc-\u03c4 reflection symmetry. We express all the active and the sterile oscillation observables in terms of only four real model parameters. Using this highly constrained scenario we predict   <math> <msup> <mo>sin</mo> <mn>2</mn> </msup> <msub> <mi>\u03b8</mi> <mn>23</mn> </msub> <mo>=</mo> <msubsup> <mn>0.545</mn> <mrow> <mo>\u2212</mo> <mn>0.004</mn> </mrow> <mrow> <mo>+</mo> <mn>0.003</mn> </mrow> </msubsup> <mo>,</mo> <mo>sin</mo> <mi>\u03b4</mi> <mo>=</mo> <mo>\u2212</mo> <msubsup> <mn>0.911</mn> <mrow> <mo>\u2212</mo> <mn>0.005</mn> </mrow> <mrow> <mo>+</mo> <mn>0.006</mn> </mrow> </msubsup> <mo>,</mo> <msup> <mfenced> <msub> <mi>U</mi> <mrow> <mi>e</mi> <mn>4</mn> </mrow> </msub> </mfenced> <mn>2</mn> </msup> <mo>=</mo> <msubsup> <mn>0.029</mn> <mrow> <mo>\u2212</mo> <mn>0.008</mn> </mrow> <mrow> <mo>+</mo> <mn>0.009</mn> </mrow> </msubsup> <mo>,</mo> <msup> <mfenced> <msub> <mi>U</mi> <mrow> <mi>\u03bc</mi> <mn>4</mn> </mrow> </msub> </mfenced> <mn>2</mn> </msup> <mo>=</mo> <msubsup> <mn>0.010</mn> <mrow> <mo>\u2212</mo> <mn>0.003</mn> </mrow> <mrow> <mo>+</mo> <mn>0.003</mn> </mrow> </msubsup> <mspace width=\"0.5em\"></mspace> <mtext>and</mtext> <mspace width=\"0.5em\"></mspace> <msup> <mfenced> <msub> <mi>U</mi> <mrow> <mi>\u03c4</mi> <mn>4</mn> </mrow> </msub> </mfenced> <mn>2</mn> </msup> <mo>=</mo> <msubsup> <mn>0.006</mn> <mrow> <mo>\u2212</mo> <mn>0.002</mn> </mrow> <mrow> <mo>+</mo> <mn>0.002</mn> </mrow> </msubsup> </math>  $$ {\\sin}^2{\\theta}_{23}={0.545}_{-0.004}^{+0.003},\\sin \\delta =-{0.911}_{-0.005}^{+0.006},{\\left|{U}_{e4}\\right|}^2={0.029}_{-0.008}^{+0.009},{\\left|{U}_{\\mu 4}\\right|}^2={0.010}_{-0.003}^{+0.003}\\kern0.5em \\mathrm{and}\\kern0.5em {\\left|{U}_{\\tau 4}\\right|}^2={0.006}_{-0.002}^{+0.002} $$  which are consistent with the current data."
    }
  ], 
  "imprints": [
    {
      "date": "2020-09-07", 
      "publisher": "Springer"
    }
  ]
}
Published on:
07 September 2020
Publisher:
Springer
Published in:
Journal of High Energy Physics , Volume 2020 (2020)
Issue 9
Pages 1-27
DOI:
https://doi.org/10.1007/JHEP09(2020)050
arXiv:
2001.07388
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: