The minimal ${U}(1)_{\rm{{B-L}}}$ extension of the Standard Model (B-L-SM) offers an explanation for neutrino mass generation via a seesaw mechanism; it also offers two new physics states, namely an extra Higgs boson and a new ${U}(1)_{\rm{{B-L}}}$ gauge boson. The emergence of a second Higgs particle as well as a new ${U}(1)_{\rm{{B-L}}}$ gauge boson, both linked to the breaking of a local ${U}(1)_{\rm{{B-L}}}$ symmetry, makes the B-L-SM rather constrained by direct searches in Large Hadron Collider (LHC) experiments. We investigate the phenomenological status of the B-L-SM by confronting the new physics predictions with the LHC and electroweak precision data. Taking into account the current bounds from direct LHC searches, we demonstrate that the prediction for the muon ${U}(1)_{\rm{{B-L}}}$ anomaly in the B-L-SM yields at most a contribution of approximately ${U}(1)_{\rm{{B-L}}}$ , which represents a tension of ${U}(1)_{\rm{{B-L}}}$ standard deviations, with the current ${U}(1)_{\rm{{B-L}}}$ uncertainty, by means of a ${U}(1)_{\rm{{B-L}}}$ boson if its mass is in the range of ${U}(1)_{\rm{{B-L}}}$ to ${U}(1)_{\rm{{B-L}}}$ , within the reach of future LHC runs. This means that the B-L-SM, with heavy yet allowed ${U}(1)_{\rm{{B-L}}}$ boson mass range, in practice, does not resolve the tension between the observed anomaly in the muon ${U}(1)_{\rm{{B-L}}}$ and the theoretical prediction in the Standard Model. Such a heavy ${U}(1)_{\rm{{B-L}}}$ boson also implies that the minimal value for the new Higgs mass is of the order of 400 GeV.
{ "_oai": { "updated": "2022-04-28T12:45:14Z", "id": "oai:repo.scoap3.org:59262", "sets": [ "CPC" ] }, "authors": [ { "affiliations": [ { "country": "Portugal", "value": "Departamento de Física da Universidade de Aveiro, Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" }, { "country": "Portugal", "value": "Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" } ], "surname": "Freitas", "email": "felipefreitas@ua.pt", "full_name": "Freitas,Felipe F.", "given_names": "Felipe F." }, { "affiliations": [ { "country": "Portugal", "value": "Departamento de Matemática da Universidade de Aveiro, Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" }, { "country": "Portugal", "value": "Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" } ], "surname": "Herdeiro", "email": "herdeiro@ua.pt", "full_name": "Herdeiro,Carlos A.R.", "given_names": "Carlos A.R." }, { "affiliations": [ { "country": "Portugal", "value": "Departamento de Física da Universidade de Aveiro, Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" }, { "country": "Portugal", "value": "Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" } ], "surname": "Morais", "email": "aapmorais@ua.pt", "full_name": "Morais,Ant\u00f3nio\u00a0P.", "given_names": "Ant\u00f3nio\u00a0P." }, { "affiliations": [ { "country": "Portugal", "value": "Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, 4710-057 Braga, <country>Portugal</country>" } ], "surname": "Onofre", "email": "Antonio.Onofre@cern.ch", "full_name": "Onofre,Ant\u00f3nio", "given_names": "Ant\u00f3nio" }, { "affiliations": [ { "country": "Sweden", "value": "Department of Astronomy and Theoretical Physics, Lund University, 221 00 Lund, <country>Sweden</country>" } ], "surname": "Pasechnik", "email": "roman.pasechnik@thep.lu.se", "full_name": "Pasechnik,Roman", "given_names": "Roman" }, { "affiliations": [ { "country": "Portugal", "value": "Departamento de Matemática da Universidade de Aveiro, Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" }, { "country": "Portugal", "value": "Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" } ], "surname": "Radu", "email": "eugen.radu@ua.pt", "full_name": "Radu,Eugen", "given_names": "Eugen" }, { "affiliations": [ { "country": "Portugal", "value": "Departamento de Matemática da Universidade de Aveiro, Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" }, { "country": "Portugal", "value": "Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, <country>Portugal</country>" } ], "surname": "Sanchis-Gual", "email": "nicolas.sanchis@tecnico.ulisboa.pt", "full_name": "Sanchis-Gual,Nicolas", "given_names": "Nicolas" }, { "affiliations": [ { "country": "Portugal", "value": "ISEL — Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, <country>Portugal</country>" }, { "country": "Portugal", "value": "Centro de Física Teórica e Computacional, Faculdade de Ciências,Universidade de Lisboa, Campo Grande, Edifício C8 1749-016 Lisboa, <country>Portugal</country>" } ], "surname": "Santos", "email": "rasantos@fc.ul.pt", "full_name": "Santos,Rui", "given_names": "Rui" } ], "titles": [ { "source": "IOP", "title": "What can a heavy Boson do to the Muon anomaly and to a new Higgs boson mass? " } ], "dois": [ { "value": "10.1088/1674-1137/abc16a" } ], "publication_info": [ { "journal_title": "Chinese Physics C", "material": "article", "journal_volume": "45", "artid": "013103", "year": 2021, "journal_issue": "1" } ], "$schema": "http://repo.scoap3.org/schemas/hep.json", "acquisition_source": { "date": "2022-04-28T12:41:18.818346", "source": "IOP", "method": "IOP", "submission_number": "63c6cb64c6f011ec8a3e56f45b8e1a22" }, "page_nr": [ 15 ], "license": [ { "url": "Creative Commons Attribution 3.0 licence" } ], "copyright": [ { "statement": "\u00a9 2021Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd", "year": "2021" } ], "control_number": "59262", "record_creation_date": "2021-01-10T19:04:05.068974", "_files": [ { "checksum": "md5:1ef437833990fb517a43ecaa29abed5d", "filetype": "pdf", "bucket": "889a092a-d9ec-49e8-81ba-1742816e0969", "version_id": "bb6b95fd-6c3c-41eb-b877-70d4e37c6d38", "key": "10.1088/1674-1137/abc16a.pdf", "size": 3500939 }, { "checksum": "md5:0c2c77cdb8974a45291ace54a3c94853", "filetype": "xml", "bucket": "889a092a-d9ec-49e8-81ba-1742816e0969", "version_id": "fd324f16-75ad-4976-a3a5-7729b02cd5e9", "key": "10.1088/1674-1137/abc16a.xml", "size": 275880 } ], "collections": [ { "primary": "Chinese Physics C" } ], "arxiv_eprints": [ { "categories": [ "hep-ph", "hep-ex" ], "value": "1912.11882" } ], "abstracts": [ { "source": "IOP", "value": "The minimal ${U}(1)_{\\rm{{B-L}}}$ extension of the Standard Model (B-L-SM) offers an explanation for neutrino mass generation via a seesaw mechanism; it also offers two new physics states, namely an extra Higgs boson and a new ${U}(1)_{\\rm{{B-L}}}$ gauge boson. The emergence of a second Higgs particle as well as a new ${U}(1)_{\\rm{{B-L}}}$ gauge boson, both linked to the breaking of a local ${U}(1)_{\\rm{{B-L}}}$ symmetry, makes the B-L-SM rather constrained by direct searches in Large Hadron Collider (LHC) experiments. We investigate the phenomenological status of the B-L-SM by confronting the new physics predictions with the LHC and electroweak precision data. Taking into account the current bounds from direct LHC searches, we demonstrate that the prediction for the muon ${U}(1)_{\\rm{{B-L}}}$ anomaly in the B-L-SM yields at most a contribution of approximately ${U}(1)_{\\rm{{B-L}}}$ , which represents a tension of ${U}(1)_{\\rm{{B-L}}}$ standard deviations, with the current ${U}(1)_{\\rm{{B-L}}}$ uncertainty, by means of a ${U}(1)_{\\rm{{B-L}}}$ boson if its mass is in the range of ${U}(1)_{\\rm{{B-L}}}$ to ${U}(1)_{\\rm{{B-L}}}$ , within the reach of future LHC runs. This means that the B-L-SM, with heavy yet allowed ${U}(1)_{\\rm{{B-L}}}$ boson mass range, in practice, does not resolve the tension between the observed anomaly in the muon ${U}(1)_{\\rm{{B-L}}}$ and the theoretical prediction in the Standard Model. Such a heavy ${U}(1)_{\\rm{{B-L}}}$ boson also implies that the minimal value for the new Higgs mass is of the order of 400 GeV." } ], "imprints": [ { "date": "2021-01-01", "publisher": "IOP" } ] }