Affine quantization of (φ4)4 succeeds while canonical quantization fails

Riccardo Fantoni (Università di Trieste, Dipartimento di Fisica, Strada Costiera 11, 34151 Grignano (Trieste), Italy) ; John R. Klauder (Department of Physics and Department of Mathematics University of Florida, Gainesville, Florida 32611-8440, USA)

Covariant scalar field quantization, nicknamed (φr)n, where r denotes the power of the interaction term and n=s+1 where s is the spatial dimension and 1 adds time. Models such that r<2n/(n2) can be treated by canonical quantization, while models such that r>2n/(n2) are nonrenormalizable, leading to perturbative infinities, or, if treated as a unit, emerge as ‘free theories’. Models such as r=2n/(n2), e.g., r=n=4, again using canonical quantization also become ‘free theories’, which must be considered quantum failures. However, there exists a different approach called affine quantization that promotes a different set of classical variables to become the basic quantum operators and it offers different results, such as models for which r>2n/(n2), which has recently correctly quantized (φ12)3. In the present paper we show, with the aid of a Monte Carlo analysis, that one of the special cases where r=2n/(n2), specifically the case r=n=4, can be acceptably quantized using affine quantization.

{
  "_oai": {
    "updated": "2022-04-05T09:20:21Z", 
    "id": "oai:repo.scoap3.org:61599", 
    "sets": [
      "PRD"
    ]
  }, 
  "authors": [
    {
      "raw_name": "Riccardo Fantoni", 
      "affiliations": [
        {
          "country": "Italy", 
          "value": "Universit\u00e0 di Trieste, Dipartimento di Fisica, Strada Costiera 11, 34151 Grignano (Trieste), Italy"
        }
      ], 
      "surname": "Fantoni", 
      "given_names": "Riccardo", 
      "full_name": "Fantoni, Riccardo"
    }, 
    {
      "raw_name": "John R. Klauder", 
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics and Department of Mathematics University of Florida, Gainesville, Florida 32611-8440, USA"
        }
      ], 
      "surname": "Klauder", 
      "given_names": "John R.", 
      "full_name": "Klauder, John R."
    }
  ], 
  "titles": [
    {
      "source": "APS", 
      "title": "Affine quantization of <math><mo>(</mo><msup><mi>\u03c6</mi><mn>4</mn></msup><msub><mo>)</mo><mn>4</mn></msub></math> succeeds while canonical quantization fails"
    }
  ], 
  "dois": [
    {
      "value": "10.1103/PhysRevD.103.076013"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "103", 
      "journal_title": "Physical Review D", 
      "material": "article", 
      "journal_issue": "7", 
      "year": 2021
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2022-04-05T09:17:25.336858", 
    "source": "APS", 
    "method": "APS", 
    "submission_number": "2cf5978cb4c111ec837fd6d834be26e1"
  }, 
  "page_nr": [
    5
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/4.0/", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Published by the American Physical Society", 
      "year": "2021"
    }
  ], 
  "control_number": "61599", 
  "record_creation_date": "2021-04-22T20:30:14.082872", 
  "_files": [
    {
      "checksum": "md5:03f022f08f432633d927e68bb178ec5c", 
      "filetype": "pdf", 
      "bucket": "0a016e61-3bd7-4199-b007-7cd37cd6f06a", 
      "version_id": "76718af9-b916-41fc-ae63-b202e5f0ecd0", 
      "key": "10.1103/PhysRevD.103.076013.pdf", 
      "size": 311773
    }, 
    {
      "checksum": "md5:b1dccc2c59944847a48feaae195abbd7", 
      "filetype": "xml", 
      "bucket": "0a016e61-3bd7-4199-b007-7cd37cd6f06a", 
      "version_id": "93324bc1-cee1-4997-94ac-ded3124043c4", 
      "key": "10.1103/PhysRevD.103.076013.xml", 
      "size": 90122
    }
  ], 
  "collections": [
    {
      "primary": "HEP"
    }, 
    {
      "primary": "Citeable"
    }, 
    {
      "primary": "Published"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-lat", 
        "hep-th", 
        "physics.comp-ph"
      ], 
      "value": "2012.09991"
    }
  ], 
  "abstracts": [
    {
      "source": "APS", 
      "value": "Covariant scalar field quantization, nicknamed <math><mo>(</mo><msup><mi>\u03c6</mi><mi>r</mi></msup><msub><mo>)</mo><mi>n</mi></msub></math>, where <math><mi>r</mi></math> denotes the power of the interaction term and <math><mi>n</mi><mo>=</mo><mi>s</mi><mo>+</mo><mn>1</mn></math> where <math><mi>s</mi></math> is the spatial dimension and 1 adds time. Models such that <math><mi>r</mi><mo>&lt;</mo><mn>2</mn><mi>n</mi><mo>/</mo><mo>(</mo><mi>n</mi><mo>\u2212</mo><mn>2</mn><mo>)</mo></math> can be treated by canonical quantization, while models such that <math><mi>r</mi><mo>&gt;</mo><mn>2</mn><mi>n</mi><mo>/</mo><mo>(</mo><mi>n</mi><mo>\u2212</mo><mn>2</mn><mo>)</mo></math> are nonrenormalizable, leading to perturbative infinities, or, if treated as a unit, emerge as \u2018free theories\u2019. Models such as <math><mi>r</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>/</mo><mo>(</mo><mi>n</mi><mo>\u2212</mo><mn>2</mn><mo>)</mo></math>, e.g., <math><mi>r</mi><mo>=</mo><mi>n</mi><mo>=</mo><mn>4</mn></math>, again using canonical quantization also become \u2018free theories\u2019, which must be considered quantum failures. However, there exists a different approach called affine quantization that promotes a different set of classical variables to become the basic quantum operators and it offers different results, such as models for which <math><mi>r</mi><mo>&gt;</mo><mn>2</mn><mi>n</mi><mo>/</mo><mo>(</mo><mi>n</mi><mo>\u2212</mo><mn>2</mn><mo>)</mo></math>, which has recently correctly quantized <math><mo>(</mo><msup><mi>\u03c6</mi><mn>12</mn></msup><msub><mo>)</mo><mn>3</mn></msub></math>. In the present paper we show, with the aid of a Monte Carlo analysis, that one of the special cases where <math><mi>r</mi><mo>=</mo><mn>2</mn><mi>n</mi><mo>/</mo><mo>(</mo><mi>n</mi><mo>\u2212</mo><mn>2</mn><mo>)</mo></math>, specifically the case <math><mi>r</mi><mo>=</mo><mi>n</mi><mo>=</mo><mn>4</mn></math>, can be acceptably quantized using affine quantization."
    }
  ], 
  "imprints": [
    {
      "date": "2021-04-22", 
      "publisher": "APS"
    }
  ]
}
Published on:
22 April 2021
Publisher:
APS
Published in:
Physical Review D , Volume 103 (2021)
Issue 7
DOI:
https://doi.org/10.1103/PhysRevD.103.076013
arXiv:
2012.09991
Copyrights:
Published by the American Physical Society
Licence:
CC-BY-4.0

Fulltext files: