Averaging generalized scalar field cosmologies I: locally rotationally symmetric Bianchi III and open Friedmann–Lemaître–Robertson–Walker models
Genly Leon (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta, Chile); Esteban González (Departamento de Física, Universidad de Santiago de Chile, Avenida Ecuador 3493, Santiago, Chile); Samuel Lepe (Instituto de Física, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaiso, Chile); Claudio Michea (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta, Chile); Alfredo Millano (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta, Chile)
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic Equation of State (EoS) with barotropic index $$\gamma $$ for locally rotationally symmetric (LRS) Bianchi III metric and open Friedmann–Lemaître–Robertson–Walker (FLRW) metric are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averaged versions have the same late-time dynamics. Therefore, simple time-averaged systems determine the future asymptotic behavior. Depending on values of barotropic index $$\gamma $$ late-time attractors of physical interests for LRS Bianchi III metric are Bianchi III flat spacetime, matter dominated FLRW universe (mimicking de Sitter, quintessence or zero acceleration solutions) and matter-curvature scaling solution. For open FLRW metric late-time attractors are a matter dominated FLRW universe and Milne solution. With this approach, oscillations entering nonlinear system through Klein–Gordon (KG) equation can be controlled and smoothed out as the Hubble factor H – acting as a time-dependent perturbation parameter – tends monotonically to zero. Numerical simulations are presented as evidence of such behaviour.