Averaging generalized scalar field cosmologies II: locally rotationally symmetric Bianchi I and flat Friedmann–Lemaître–Robertson–Walker models
Genly Leon (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta, Chile); Sebastián Cuéllar (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta, Chile); Esteban González (Departamento de Física, Universidad de Santiago de Chile, Avenida Ecuador 3493, Santiago, Chile); Samuel Lepe (Facultad de Ciencias, Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaiso, Chile); Claudio Michea (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta, Chile); et al - Show all 6 authors
Scalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic equation of state (EoS) with barotropic index $$\gamma $$ for the locally rotationally symmetric (LRS) Bianchi I and flat Friedmann–Lemaître–Robertson–Walker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averaged versions have the same late-time dynamics. Therefore, the simplest time-averaged system determines the future asymptotic behavior. Depending on the values of $$\gamma $$ , the late-time attractors of physical interests are flat quintessence dominated FLRW universe and Einstein-de Sitter solution. With this approach, the oscillations entering the system through the Klein–Gordon (KG) equation can be controlled and smoothed out as the Hubble parameter H – acting as time-dependent perturbation parameter – tends monotonically to zero. Numerical simulations are presented as evidence of such behavior.