The $$P_{cs}(4459)$$ P cs ( 4459 ) pentaquark from a combined effective field theory and phenomenological perspective

Fang-Zheng Peng (School of Physics, Beihang University, Beijing, 100191, China) ; Mao-Jun Yan (School of Physics, Beihang University, Beijing, 100191, China) ; Mario Sánchez Sánchez (Centre d’Études Nucléaires, CNRS/IN2P3, Université de Bordeaux, Gradignan, 33175, France) ; Manuel Pavon Valderrama (School of Physics, Beihang University, Beijing, 100191, China; International Research Center for Nuclei and Particles in the Cosmos and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing, 100191, China)

The observation of the $$P_{cs}(4459)$$ P cs ( 4459 ) by the LHCb collaboration adds a new member to the set of known hidden-charm pentaquarks, which includes the $$P_c(4312)$$ P c ( 4312 ) , $$P_c(4440)$$ P c ( 4440 ) and $$P_c(4457)$$ P c ( 4457 ) . The $$P_{cs}(4459)$$ P cs ( 4459 ) is expected to have the light-quark content of a $$\Lambda $$ Λ baryon ( $$I=0$$ I = 0 , $$S=-1$$ S = - 1 ), but its spin is unknown. Its closeness to the $${\bar{D}}^* \Xi _c$$ D ¯ Ξ c threshold – $$4478\,{\mathrm{MeV}}$$ 4478 MeV in the isospin-symmetric limit – suggests the molecular hypothesis as a plausible explanation for the $$P_{cs}(4459)$$ P cs ( 4459 ) . While in the absence of coupled-channel dynamics heavy-quark spin symmetry predicts the two spin-states of the $${\bar{D}}^* \Xi _c$$ D ¯ Ξ c to be degenerate, power counting arguments indicate that the coupling with the nearby $${\bar{D}} \Xi _c'$$ D ¯ Ξ c and $${\bar{D}} \Xi _c^*$$ D ¯ Ξ c channels might be a leading order effect. This generates a hyperfine splitting in which the $$J=\tfrac{3}{2}$$ J = 3 2 $${\bar{D}}^* \Xi _c$$ D ¯ Ξ c pentaquark will be lighter than the $$J=\tfrac{1}{2}$$ J = 1 2 configuration, which we estimate to be of the order of $$5-15\,{\mathrm{MeV}}$$ 5 - 15 MeV . We also point out an accidental symmetry between the $$P_{cs}(4459)$$ P cs ( 4459 ) and $$P_c(4440/4457)$$ P c ( 4440 / 4457 ) potentials. Finally, we argue that the spectroscopy and the $$J/\psi \Lambda $$ J / ψ Λ decays of the $$P_{cs}(4459)$$ P cs ( 4459 ) might suggest a marginal preference for $$J = \tfrac{3}{2}$$ J = 3 2 over $$J = \tfrac{1}{2}$$ J = 1 2 .

{
  "_oai": {
    "updated": "2023-02-05T12:30:18Z", 
    "id": "oai:repo.scoap3.org:63742", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "School of Physics, Beihang University, Beijing, 100191, China", 
          "organization": "Beihang University"
        }
      ], 
      "surname": "Peng", 
      "given_names": "Fang-Zheng", 
      "full_name": "Peng, Fang-Zheng"
    }, 
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "School of Physics, Beihang University, Beijing, 100191, China", 
          "organization": "Beihang University"
        }
      ], 
      "surname": "Yan", 
      "given_names": "Mao-Jun", 
      "full_name": "Yan, Mao-Jun"
    }, 
    {
      "affiliations": [
        {
          "country": "France", 
          "value": "Centre d\u2019\u00c9tudes Nucl\u00e9aires, CNRS/IN2P3, Universit\u00e9 de Bordeaux, Gradignan, 33175, France", 
          "organization": "CNRS/IN2P3, Universit\u00e9 de Bordeaux"
        }
      ], 
      "surname": "S\u00e1nchez S\u00e1nchez", 
      "given_names": "Mario", 
      "full_name": "S\u00e1nchez S\u00e1nchez, Mario"
    }, 
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "School of Physics, Beihang University, Beijing, 100191, China", 
          "organization": "Beihang University"
        }, 
        {
          "country": "China", 
          "value": "International Research Center for Nuclei and Particles in the Cosmos and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing, 100191, China", 
          "organization": "Beihang University"
        }
      ], 
      "surname": "Pavon Valderrama", 
      "email": "mpavon@buaa.edu.cn", 
      "full_name": "Pavon Valderrama, Manuel", 
      "given_names": "Manuel"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "The  $$P_{cs}(4459)$$  <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>cs</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>4459</mn> <mo>)</mo> </mrow> </mrow> </math>   pentaquark from a combined effective field theory and phenomenological perspective"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-021-09416-x"
    }
  ], 
  "publication_info": [
    {
      "page_end": "16", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "81", 
      "artid": "s10052-021-09416-x", 
      "year": 2021, 
      "page_start": "1", 
      "journal_issue": "7"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2023-02-05T12:30:16.118778", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "ce95fe4ea55011ed9a680e231c257137"
  }, 
  "page_nr": [
    16
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2021"
    }
  ], 
  "control_number": "63742", 
  "record_creation_date": "2021-07-29T18:30:16.189374", 
  "_files": [
    {
      "checksum": "md5:178225a3e053af1bde4ef4f9e51c4318", 
      "filetype": "xml", 
      "bucket": "e720b752-dfcf-4449-a9b3-2987320820ec", 
      "version_id": "0856a5b4-7ee1-4cf8-b775-7c207e8dc9f2", 
      "key": "10.1140/epjc/s10052-021-09416-x.xml", 
      "size": 37033
    }, 
    {
      "checksum": "md5:816c047b54f0fe5f8650b38200f8186d", 
      "filetype": "pdf/a", 
      "bucket": "e720b752-dfcf-4449-a9b3-2987320820ec", 
      "version_id": "02ede649-8300-42d2-85fe-410757f2726c", 
      "key": "10.1140/epjc/s10052-021-09416-x_a.pdf", 
      "size": 475691
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph", 
        "hep-ex", 
        "hep-lat", 
        "nucl-th"
      ], 
      "value": "2011.01915"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "The observation of the  $$P_{cs}(4459)$$  <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>cs</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>4459</mn> <mo>)</mo> </mrow> </mrow> </math>   by the LHCb collaboration adds a new member to the set of known hidden-charm pentaquarks, which includes the  $$P_c(4312)$$  <math> <mrow> <msub> <mi>P</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mn>4312</mn> <mo>)</mo> </mrow> </mrow> </math>  ,  $$P_c(4440)$$  <math> <mrow> <msub> <mi>P</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mn>4440</mn> <mo>)</mo> </mrow> </mrow> </math>   and  $$P_c(4457)$$  <math> <mrow> <msub> <mi>P</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mn>4457</mn> <mo>)</mo> </mrow> </mrow> </math>  . The  $$P_{cs}(4459)$$  <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>cs</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>4459</mn> <mo>)</mo> </mrow> </mrow> </math>   is expected to have the light-quark content of a  $$\\Lambda $$  <math> <mi>\u039b</mi> </math>   baryon ( $$I=0$$  <math> <mrow> <mi>I</mi> <mo>=</mo> <mn>0</mn> </mrow> </math>  ,  $$S=-1$$  <math> <mrow> <mi>S</mi> <mo>=</mo> <mo>-</mo> <mn>1</mn> </mrow> </math>  ), but its spin is unknown. Its closeness to the  $${\\bar{D}}^* \\Xi _c$$  <math> <mrow> <msup> <mrow> <mover> <mrow> <mi>D</mi> </mrow> <mrow> <mo>\u00af</mo> </mrow> </mover> </mrow> <mo>\u2217</mo> </msup> <msub> <mi>\u039e</mi> <mi>c</mi> </msub> </mrow> </math>   threshold \u2013  $$4478\\,{\\mathrm{MeV}}$$  <math> <mrow> <mn>4478</mn> <mspace width=\"0.166667em\"></mspace> <mi>MeV</mi> </mrow> </math>   in the isospin-symmetric limit \u2013 suggests the molecular hypothesis as a plausible explanation for the  $$P_{cs}(4459)$$  <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>cs</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>4459</mn> <mo>)</mo> </mrow> </mrow> </math>  . While in the absence of coupled-channel dynamics heavy-quark spin symmetry predicts the two spin-states of the  $${\\bar{D}}^* \\Xi _c$$  <math> <mrow> <msup> <mrow> <mover> <mrow> <mi>D</mi> </mrow> <mrow> <mo>\u00af</mo> </mrow> </mover> </mrow> <mo>\u2217</mo> </msup> <msub> <mi>\u039e</mi> <mi>c</mi> </msub> </mrow> </math>   to be degenerate, power counting arguments indicate that the coupling with the nearby  $${\\bar{D}} \\Xi _c'$$  <math> <mrow> <mover> <mrow> <mi>D</mi> </mrow> <mrow> <mo>\u00af</mo> </mrow> </mover> <msubsup> <mi>\u039e</mi> <mi>c</mi> <mo>\u2032</mo> </msubsup> </mrow> </math>   and  $${\\bar{D}} \\Xi _c^*$$  <math> <mrow> <mover> <mrow> <mi>D</mi> </mrow> <mrow> <mo>\u00af</mo> </mrow> </mover> <msubsup> <mi>\u039e</mi> <mi>c</mi> <mo>\u2217</mo> </msubsup> </mrow> </math>   channels might be a leading order effect. This generates a hyperfine splitting in which the  $$J=\\tfrac{3}{2}$$  <math> <mrow> <mi>J</mi> <mo>=</mo> <mstyle> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </math>    $${\\bar{D}}^* \\Xi _c$$  <math> <mrow> <msup> <mrow> <mover> <mrow> <mi>D</mi> </mrow> <mrow> <mo>\u00af</mo> </mrow> </mover> </mrow> <mo>\u2217</mo> </msup> <msub> <mi>\u039e</mi> <mi>c</mi> </msub> </mrow> </math>   pentaquark will be lighter than the  $$J=\\tfrac{1}{2}$$  <math> <mrow> <mi>J</mi> <mo>=</mo> <mstyle> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </math>   configuration, which we estimate to be of the order of  $$5-15\\,{\\mathrm{MeV}}$$  <math> <mrow> <mn>5</mn> <mo>-</mo> <mn>15</mn> <mspace width=\"0.166667em\"></mspace> <mi>MeV</mi> </mrow> </math>  . We also point out an accidental symmetry between the  $$P_{cs}(4459)$$  <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>cs</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>4459</mn> <mo>)</mo> </mrow> </mrow> </math>   and  $$P_c(4440/4457)$$  <math> <mrow> <msub> <mi>P</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mn>4440</mn> <mo>/</mo> <mn>4457</mn> <mo>)</mo> </mrow> </mrow> </math>   potentials. Finally, we argue that the spectroscopy and the  $$J/\\psi \\Lambda $$  <math> <mrow> <mi>J</mi> <mo>/</mo> <mi>\u03c8</mi> <mi>\u039b</mi> </mrow> </math>   decays of the  $$P_{cs}(4459)$$  <math> <mrow> <msub> <mi>P</mi> <mrow> <mi>cs</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>4459</mn> <mo>)</mo> </mrow> </mrow> </math>   might suggest a marginal preference for  $$J = \\tfrac{3}{2}$$  <math> <mrow> <mi>J</mi> <mo>=</mo> <mstyle> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </math>   over  $$J = \\tfrac{1}{2}$$  <math> <mrow> <mi>J</mi> <mo>=</mo> <mstyle> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </math>  ."
    }
  ], 
  "imprints": [
    {
      "date": "2021-07-29", 
      "publisher": "Springer"
    }
  ]
}
Published on:
29 July 2021
Publisher:
Springer
Published in:
European Physical Journal C , Volume 81 (2021)
Issue 7
Pages 1-16
DOI:
https://doi.org/10.1140/epjc/s10052-021-09416-x
arXiv:
2011.01915
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: