Renormalized holographic entanglement entropy for quadratic curvature gravity
Giorgos Anastasiou (Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile); Ignacio J. Araya (Instituto de Ciencias Exactas y Naturales, Facultad de Ciencias, Universidad Arturo Prat, Avenida Arturo Prat Chacón 2120, 1110939 Iquique, Chile); Javier Moreno (Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile, Center for Quantum Mathematics and Physics (QMAP), Department of Physics & Astronomy, University of California, Davis, California 95616, USA); Rodrigo Olea (Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago, Chile); David Rivera-Betancour (Centre de Physique Théorique, CNRS, École Polytechnique, 91128 Palaiseau Cedex, France)
We derive a covariant expression for the renormalized holographic entanglement entropy for conformal field theories (CFTs) dual to quadratic curvature gravity in arbitrary dimensions. This expression is written as the sum of the bare entanglement entropy functional obtained using standard conical defect techniques, and a counterterm defined at the boundary of the extremal surface of the functional. The latter corresponds to the cod-2 self-replicating part of the extrinsic counterterms when evaluated on the replica orbifold. This renormalization method isolates the universal terms of the holographic entanglement entropy functional. We use it to compute the standard -function candidate for CFTs of arbitrary dimension, and the type-B anomaly coefficient for four-dimensional CFTs.