Averaging generalized scalar-field cosmologies III: Kantowski–Sachs and closed Friedmann–Lemaître–Robertson–Walker models
Genly Leon (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile); Esteban González (Dirección de Investigación y Postgrado, Universidad de Aconcagua, Pedro de Villagra 2265, Vitacura, Santiago, 7630367, Chile); Samuel Lepe (Instituto de Física, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaiso, Chile); Claudio Michea (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile); Alfredo Millano (Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile)
Scalar-field cosmologies with a generalized harmonic potential and matter with energy density $$\rho _m$$ , pressure $$p_m$$ , and barotropic equation of state (EoS) $$p_m=(\gamma -1)\rho _m, \; \gamma \in [0,2]$$ in Kantowski–Sachs (KS) and closed Friedmann–Lemaître–Robertson–Walker (FLRW) metrics are investigated. We use methods from non-linear dynamical systems theory and averaging theory considering a time-dependent perturbation function D. We define a regular dynamical system over a compact phase space, obtaining global results. That is, for KS metric the global late-time attractors of full and time-averaged systems are two anisotropic contracting solutions, which are non-flat locally rotationally symmetric (LRS) Kasner and Taub (flat LRS Kasner) for $$0\le \gamma \le 2$$ , and flat FLRW matter-dominated universe if $$0\le \gamma \le \frac{2}{3}$$ . For closed FLRW metric late-time attractors of full and averaged systems are a flat matter-dominated FLRW universe for $$0\le \gamma \le \frac{2}{3}$$ as in KS and Einstein–de Sitter solution for $$0\le \gamma <1$$ . Therefore, a time-averaged system determines future asymptotics of the full system. Also, oscillations entering the system through Klein–Gordon (KG) equation can be controlled and smoothed out when D goes monotonically to zero, and incidentally for the whole D-range for KS and closed FLRW (if $$0\le \gamma < 1$$ ) too. However, for $$\gamma \ge 1$$ closed FLRW solutions of the full system depart from the solutions of the averaged system as D is large. Our results are supported by numerical simulations.