Electroweak and left-right phase transitions in SO(5)×U(1)×SU(3) gauge-Higgs unification

Shuichiro Funatsu (Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, Hubei 430079, China) ; Hisaki Hatanaka (Osaka, Osaka 536-0014, Japan) ; Yutaka Hosotani (Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan) ; Yuta Orikasa (Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00 Prague 1, Czech Republic) ; Naoki Yamatsu (Department of Physics, Kyushu University, Fukuoka 819-0395, Japan)

The electroweak phase transition in grand unified theory inspired SO(5)×U(1)×SU(3) gauge-Higgs unification is shown to be weakly first order and occurs at T=TcEW163 GeV, which is very similar to the behavior in the standard model in perturbation theory. A new phase appears at higher temperatures. SU(2)L×U(1)Y (θH=0) and SU(2)R×U(1)Y (θH=π) phases become almost degenerate above TmKK where mKK is the Kaluza-Klein mass scale (typically around 13 TeV) and θH is the Aharonov-Bohm phase along the fifth dimension. The two phases become degenerate at T=TcLRmKK. As the temperature drops in the evolution of the early Universe the SU(2)R×U(1)Y phase becomes unstable. The tunneling rate from the SU(2)R×U(1)Y phase to the SU(2)L×U(1)Y phase becomes sizable and a first-order phase transition takes place at T=2.52.6 TeV. The amount of gravitational waves produced in this left-right phase transition is small, far below the reach of the sensitivity of LISA. A detailed analysis of the SU(2)R×U(1)Y phase is also given. It is shown that the W boson, Z boson and photon, with θH varying from 0 to π, are transformed to gauge bosons in the SU(2)R×U(1)Y phase. Gauge couplings and wave functions of quarks, leptons, and dark fermions in the SU(2)R×U(1)Y phase are determined.

{
  "_oai": {
    "updated": "2022-04-05T10:02:21Z", 
    "id": "oai:repo.scoap3.org:66708", 
    "sets": [
      "PRD"
    ]
  }, 
  "authors": [
    {
      "raw_name": "Shuichiro Funatsu", 
      "affiliations": [
        {
          "country": "China", 
          "value": "Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, Hubei 430079, China"
        }
      ], 
      "surname": "Funatsu", 
      "given_names": "Shuichiro", 
      "full_name": "Funatsu, Shuichiro"
    }, 
    {
      "raw_name": "Hisaki Hatanaka", 
      "affiliations": [
        {
          "country": "Japan", 
          "value": "Osaka, Osaka 536-0014, Japan"
        }
      ], 
      "surname": "Hatanaka", 
      "given_names": "Hisaki", 
      "full_name": "Hatanaka, Hisaki"
    }, 
    {
      "raw_name": "Yutaka Hosotani", 
      "affiliations": [
        {
          "country": "Japan", 
          "value": "Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan"
        }
      ], 
      "surname": "Hosotani", 
      "given_names": "Yutaka", 
      "full_name": "Hosotani, Yutaka"
    }, 
    {
      "raw_name": "Yuta Orikasa", 
      "affiliations": [
        {
          "country": "Czech Republic", 
          "value": "Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00 Prague 1, Czech Republic"
        }
      ], 
      "surname": "Orikasa", 
      "given_names": "Yuta", 
      "full_name": "Orikasa, Yuta"
    }, 
    {
      "raw_name": "Naoki Yamatsu", 
      "affiliations": [
        {
          "country": "Japan", 
          "value": "Department of Physics, Kyushu University, Fukuoka 819-0395, Japan"
        }
      ], 
      "surname": "Yamatsu", 
      "given_names": "Naoki", 
      "full_name": "Yamatsu, Naoki"
    }
  ], 
  "titles": [
    {
      "source": "APS", 
      "title": "Electroweak and left-right phase transitions in <math><mi>S</mi><mi>O</mi><mo>(</mo><mn>5</mn><mo>)</mo><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>\u00d7</mo><mi>S</mi><mi>U</mi><mo>(</mo><mn>3</mn><mo>)</mo></math> gauge-Higgs unification"
    }
  ], 
  "dois": [
    {
      "value": "10.1103/PhysRevD.104.115018"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "104", 
      "journal_title": "Physical Review D", 
      "material": "article", 
      "journal_issue": "11", 
      "year": 2021
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2022-04-05T09:25:05.007439", 
    "source": "APS", 
    "method": "APS", 
    "submission_number": "3dc63052b4c211ec837fd6d834be26e1"
  }, 
  "page_nr": [
    26
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/4.0/", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Published by the American Physical Society", 
      "year": "2021"
    }
  ], 
  "control_number": "66708", 
  "record_creation_date": "2021-12-20T18:30:12.094769", 
  "_files": [
    {
      "checksum": "md5:3d7d17a102221b110e0a9defa1c7f0ae", 
      "filetype": "pdf", 
      "bucket": "8dbcd461-5bee-4e3b-ba01-da29bc558bb4", 
      "version_id": "7232e34b-f1b5-4345-9641-9e4a91979f72", 
      "key": "10.1103/PhysRevD.104.115018.pdf", 
      "size": 848463
    }, 
    {
      "checksum": "md5:c51f461fdccfb6ab496f86d983137db1", 
      "filetype": "xml", 
      "bucket": "8dbcd461-5bee-4e3b-ba01-da29bc558bb4", 
      "version_id": "5b005583-282a-4ac5-91f7-6a771a60284e", 
      "key": "10.1103/PhysRevD.104.115018.xml", 
      "size": 954613
    }
  ], 
  "collections": [
    {
      "primary": "HEP"
    }, 
    {
      "primary": "Citeable"
    }, 
    {
      "primary": "Published"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph"
      ], 
      "value": "2104.02870"
    }
  ], 
  "abstracts": [
    {
      "source": "APS", 
      "value": "The electroweak phase transition in grand unified theory inspired <math><mi>S</mi><mi>O</mi><mo>(</mo><mn>5</mn><mo>)</mo><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>\u00d7</mo><mi>S</mi><mi>U</mi><mo>(</mo><mn>3</mn><mo>)</mo></math> gauge-Higgs unification is shown to be weakly first order and occurs at <math><mi>T</mi><mo>=</mo><msubsup><mi>T</mi><mi>c</mi><mrow><mi>EW</mi></mrow></msubsup><mo>\u223c</mo><mn>163</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi></math>, which is very similar to the behavior in the standard model in perturbation theory. A new phase appears at higher temperatures. <math><mrow><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><msub><mo>)</mo><mi>L</mi></msub><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><msub><mo>)</mo><mi>Y</mi></msub></mrow></math> (<math><msub><mi>\u03b8</mi><mi>H</mi></msub><mo>=</mo><mn>0</mn></math>) and <math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><msub><mo>)</mo><mi>R</mi></msub><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><msub><mo>)</mo><msup><mi>Y</mi><mo>\u2032</mo></msup></msub></math> (<math><msub><mi>\u03b8</mi><mi>H</mi></msub><mo>=</mo><mi>\u03c0</mi></math>) phases become almost degenerate above <math><mi>T</mi><mo>\u223c</mo><msub><mi>m</mi><mrow><mi>KK</mi></mrow></msub></math> where <math><msub><mi>m</mi><mrow><mi>KK</mi></mrow></msub></math> is the Kaluza-Klein mass scale (typically around 13 TeV) and <math><msub><mi>\u03b8</mi><mi>H</mi></msub></math> is the Aharonov-Bohm phase along the fifth dimension. The two phases become degenerate at <math><mi>T</mi><mo>=</mo><msubsup><mi>T</mi><mi>c</mi><mrow><mi>LR</mi></mrow></msubsup><mo>\u223c</mo><msub><mi>m</mi><mrow><mi>KK</mi></mrow></msub></math>. As the temperature drops in the evolution of the early Universe the <math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><msub><mo>)</mo><mi>R</mi></msub><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><msub><mo>)</mo><msup><mi>Y</mi><mo>\u2032</mo></msup></msub></math> phase becomes unstable. The tunneling rate from the <math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><msub><mo>)</mo><mi>R</mi></msub><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><msub><mo>)</mo><msup><mi>Y</mi><mo>\u2032</mo></msup></msub></math> phase to the <math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><msub><mo>)</mo><mi>L</mi></msub><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><msub><mo>)</mo><mi>Y</mi></msub></math> phase becomes sizable and a first-order phase transition takes place at <math><mrow><mi>T</mi><mo>=</mo><mn>2.5</mn><mi>\u2013</mi><mn>2.6</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></mrow></math>. The amount of gravitational waves produced in this left-right phase transition is small, far below the reach of the sensitivity of LISA. A detailed analysis of the <math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><msub><mo>)</mo><mi>R</mi></msub><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><msub><mo>)</mo><msup><mi>Y</mi><mo>\u2032</mo></msup></msub></math> phase is also given. It is shown that the <math><mi>W</mi></math> boson, <math><mi>Z</mi></math> boson and photon, with <math><msub><mi>\u03b8</mi><mi>H</mi></msub></math> varying from 0 to <math><mi>\u03c0</mi></math>, are transformed to gauge bosons in the <math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><msub><mo>)</mo><mi>R</mi></msub><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><msub><mo>)</mo><msup><mi>Y</mi><mo>\u2032</mo></msup></msub></math> phase. Gauge couplings and wave functions of quarks, leptons, and dark fermions in the <math><mi>S</mi><mi>U</mi><mo>(</mo><mn>2</mn><msub><mo>)</mo><mi>R</mi></msub><mo>\u00d7</mo><mi>U</mi><mo>(</mo><mn>1</mn><msub><mo>)</mo><msup><mi>Y</mi><mo>\u2032</mo></msup></msub></math> phase are determined."
    }
  ], 
  "imprints": [
    {
      "date": "2021-12-20", 
      "publisher": "APS"
    }
  ]
}
Published on:
20 December 2021
Publisher:
APS
Published in:
Physical Review D , Volume 104 (2021)
Issue 11
DOI:
https://doi.org/10.1103/PhysRevD.104.115018
arXiv:
2104.02870
Copyrights:
Published by the American Physical Society
Licence:
CC-BY-4.0

Fulltext files: