Composition of low-lying J=32± Δ-baryons

Langtian Liu (School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China; Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China) ; Chen Chen (Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China; Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China) ; Ya Lu (School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China; Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China; Department of Physics, Nanjing Tech University, Nanjing 211816, China) ; Craig D. Roberts (School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China; Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China) ; Jorge Segovia (Departamento Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain; Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China)

A Poincaré-covariant quark+diquark Faddeev equation is used to develop insights into the structure of the four lightest (I,JP=32,32±) baryon multiplets. While these systems can contain isovector-axialvector and isovector-vector diquarks, one may neglect the latter and still arrive at a reliable description. The (32,32+) states are the simpler systems, with features that bear some resemblance to quark model pictures, e.g., their most prominent rest-frame orbital angular momentum component is S-wave and the Δ(1600)32+ may reasonably be viewed as a radial excitation of the Δ(1232)32+. The (32,32) states are more complex: the Δ(1940)32 expresses little of the character of a radial excitation of the Δ(1700)32; and while the rest-frame wave function of the latter is predominantly P-wave, the leading piece in the Δ(1940)32 wave function is S-wave, in conflict with quark model expectations. Experiments that can test these predictions, such as large momentum transfer resonance electroexcitation, may shed light on the nature of emergent hadron mass.

{
  "_oai": {
    "updated": "2022-06-28T00:30:38Z", 
    "id": "oai:repo.scoap3.org:71044", 
    "sets": [
      "PRD"
    ]
  }, 
  "authors": [
    {
      "raw_name": "Langtian Liu (\u5218\u6d6a\u5929)", 
      "affiliations": [
        {
          "country": "China", 
          "value": "School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China"
        }, 
        {
          "country": "China", 
          "value": "Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China"
        }
      ], 
      "surname": "Liu", 
      "given_names": "Langtian", 
      "full_name": "Liu, Langtian"
    }, 
    {
      "raw_name": "Chen Chen (\u9648\u6668)", 
      "affiliations": [
        {
          "country": "China", 
          "value": "Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China"
        }, 
        {
          "country": "China", 
          "value": "Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China"
        }
      ], 
      "surname": "Chen", 
      "given_names": "Chen", 
      "full_name": "Chen, Chen"
    }, 
    {
      "raw_name": "Ya Lu (\u9646\u4e9a)", 
      "affiliations": [
        {
          "country": "China", 
          "value": "School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China"
        }, 
        {
          "country": "China", 
          "value": "Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China"
        }, 
        {
          "country": "China", 
          "value": "Department of Physics, Nanjing Tech University, Nanjing 211816, China"
        }
      ], 
      "surname": "Lu", 
      "given_names": "Ya", 
      "full_name": "Lu, Ya"
    }, 
    {
      "raw_name": "Craig D. Roberts", 
      "affiliations": [
        {
          "country": "China", 
          "value": "School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China"
        }, 
        {
          "country": "China", 
          "value": "Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China"
        }
      ], 
      "surname": "Roberts", 
      "given_names": "Craig D.", 
      "full_name": "Roberts, Craig D."
    }, 
    {
      "raw_name": "Jorge Segovia", 
      "affiliations": [
        {
          "country": "Spain", 
          "value": "Departamento Sistemas F\u00edsicos, Qu\u00edmicos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain"
        }, 
        {
          "country": "China", 
          "value": "Institute for Nonperturbative Physics, Nanjing University, Nanjing, Jiangsu 210093, China"
        }
      ], 
      "surname": "Segovia", 
      "given_names": "Jorge", 
      "full_name": "Segovia, Jorge"
    }
  ], 
  "titles": [
    {
      "source": "APS", 
      "title": "Composition of low-lying <math><mrow><mi>J</mi><mo>=</mo><msup><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mrow><mo>\u00b1</mo></mrow></msup></mrow></math> <math><mrow><mi>\u0394</mi></mrow></math>-baryons"
    }
  ], 
  "dois": [
    {
      "value": "10.1103/PhysRevD.105.114047"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "105", 
      "journal_title": "Physical Review D", 
      "material": "article", 
      "journal_issue": "11", 
      "year": 2022
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2022-06-28T00:30:19.080720", 
    "source": "APS", 
    "method": "APS", 
    "submission_number": "71b4323af67911eca1a1661ec451a4e4"
  }, 
  "page_nr": [
    13
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/4.0/", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Published by the American Physical Society", 
      "year": "2022"
    }
  ], 
  "control_number": "71044", 
  "record_creation_date": "2022-06-27T16:30:04.169772", 
  "_files": [
    {
      "checksum": "md5:f87a1b76d4d66a061eead54a1f23268a", 
      "filetype": "pdf", 
      "bucket": "ee473505-9e20-45a6-ab7b-2bf596bfbfed", 
      "version_id": "ca44b3b3-a41c-42e8-83a5-bb9cf502d699", 
      "key": "10.1103/PhysRevD.105.114047.pdf", 
      "size": 1628738
    }, 
    {
      "checksum": "md5:b662f5f3d3973b29e02f9568fbbbae4e", 
      "filetype": "xml", 
      "bucket": "ee473505-9e20-45a6-ab7b-2bf596bfbfed", 
      "version_id": "2b118090-c7fa-48c5-bfa5-5732e49c28b1", 
      "key": "10.1103/PhysRevD.105.114047.xml", 
      "size": 293426
    }
  ], 
  "collections": [
    {
      "primary": "HEP"
    }, 
    {
      "primary": "Citeable"
    }, 
    {
      "primary": "Published"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph", 
        "hep-ex", 
        "hep-lat", 
        "nucl-ex", 
        "nucl-th"
      ], 
      "value": "2203.12083"
    }
  ], 
  "abstracts": [
    {
      "source": "APS", 
      "value": "A Poincar\u00e9-covariant <math><mrow><mi>quark</mi><mo>+</mo><mi>diquark</mi></mrow></math> Faddeev equation is used to develop insights into the structure of the four lightest <math><mo>(</mo><mi>I</mi><mo>,</mo><msup><mi>J</mi><mi>P</mi></msup><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><msup><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>\u00b1</mo></msup><mo>)</mo></math> baryon multiplets. While these systems can contain isovector-axialvector and isovector-vector diquarks, one may neglect the latter and still arrive at a reliable description. The <math><mo>(</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><msup><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>+</mo></msup><mo>)</mo></math> states are the simpler systems, with features that bear some resemblance to quark model pictures, e.g., their most prominent rest-frame orbital angular momentum component is <math><mi>S</mi></math>-wave and the <math><mrow><mi>\u0394</mi><mo>(</mo><mn>1600</mn><mo>)</mo><msup><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mrow><mo>+</mo></mrow></msup></mrow></math> may reasonably be viewed as a radial excitation of the <math><mi>\u0394</mi><mo>(</mo><mn>1232</mn><mo>)</mo><msup><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>+</mo></msup></math>. The <math><mo>(</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><msup><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>\u2212</mo></msup><mo>)</mo></math> states are more complex: the <math><mi>\u0394</mi><mo>(</mo><mn>1940</mn><mo>)</mo><msup><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>\u2212</mo></msup></math> expresses little of the character of a radial excitation of the <math><mi>\u0394</mi><mo>(</mo><mn>1700</mn><mo>)</mo><msup><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>\u2212</mo></msup></math>; and while the rest-frame wave function of the latter is predominantly <math><mi>P</mi></math>-wave, the leading piece in the <math><mi>\u0394</mi><mo>(</mo><mn>1940</mn><mo>)</mo><msup><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>\u2212</mo></msup></math> wave function is <math><mi>S</mi></math>-wave, in conflict with quark model expectations. Experiments that can test these predictions, such as large momentum transfer resonance electroexcitation, may shed light on the nature of emergent hadron mass."
    }
  ], 
  "imprints": [
    {
      "date": "2022-06-27", 
      "publisher": "APS"
    }
  ]
}
Published on:
27 June 2022
Publisher:
APS
Published in:
Physical Review D , Volume 105 (2022)
Issue 11
DOI:
https://doi.org/10.1103/PhysRevD.105.114047
arXiv:
2203.12083
Copyrights:
Published by the American Physical Society
Licence:
CC-BY-4.0

Fulltext files: