Disentangling the sources of ionizing radiation in superconducting qubits
L. Cardani (INFN, Sezione di Roma, P.le Aldo Moro 2, Rome, 00185, Italy); I. Colantoni (INFN, Sezione di Roma, P.le Aldo Moro 2, Rome, 00185, Italy, Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia, c/o Dip. Fisica, Sapienza Università di Roma, Rome, 00185, Italy); A. Cruciani (INFN, Sezione di Roma, P.le Aldo Moro 2, Rome, 00185, Italy); F. Dominicis (Gran Sasso Science Institute, L’Aquila, 67100, Italy, INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ, 67100, Italy); G. D’Imperio (INFN, Sezione di Roma, P.le Aldo Moro 2, Rome, 00185, Italy); et al - Show all 30 authors
Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and $$\gamma $$ -rays emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits. We present a GEANT-4 based simulation to predict the rate of impacts and the amount of energy released in a qubit chip from each of the mentioned sources. We finally propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment.