A precision relation between Γ(K → μ + μ − )(t) and B K L μ + μ / B K L γγ $$ \mathcal{B}\left({K}_L\to {\mu}^{+}{\mu}^{-}\right)/\mathcal{B}\left({K}_L\to \gamma \gamma \right) $$

Avital Dery (Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA) ; Mitrajyoti Ghosh (Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA) ; Yuval Grossman (Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA) ; Teppei Kitahara (Institute for Advanced Research, Nagoya University, Nagoya, 464-8601, Japan; Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, 464-8602, Japan; KEK Theory Center, IPNS, KEK, Tsukuba, 305-0801, Japan; CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China) ; Stefan Schacht (Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom)

We find that the phase appearing in the unitarity relation between B K L μ + μ $$ \mathcal{B}\left({K}_L\to {\mu}^{+}{\mu}^{-}\right) $$ and B K L γγ $$ \mathcal{B}\left({K}_L\to \gamma \gamma \right) $$ is equal to the phase shift in the interference term of the time- dependent K → μ + μ − decay. A probe of this relation at future kaon facilities constitutes a Standard Model test with a theory precision of about 2%. The phase has further importance for sensitivity studies regarding the measurement of the time-dependent K → μ + μ − decay rate to extract the CKM matrix element combination V ts V td sin β + β s A 2 λ 5 η ¯ $$ \mid {V}_{ts}{V}_{td}\sin \left(\beta +{\beta}_s\right)\mid \approx {A}^2{\lambda}^5\overline{\eta} $$ . We find a model-independent theoretically clean prediction, cos2 φ 0 = 0.96 ± 0.03. The quoted error is a combination of the theoretical and experimental errors, and both of them are expected to shrink in the future. Using input from the large-N C limit within chiral perturbation theory, we find a theory preference towards solutions with negative cos φ 0, reducing a four-fold ambiguity in the angle φ 0 to a two-fold one.

{
  "_oai": {
    "updated": "2023-06-24T00:34:22Z", 
    "id": "oai:repo.scoap3.org:76195", 
    "sets": [
      "JHEP"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA", 
          "organization": "Cornell University"
        }
      ], 
      "surname": "Dery", 
      "email": "avital.dery@cornell.edu", 
      "full_name": "Dery, Avital", 
      "given_names": "Avital"
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA", 
          "organization": "Cornell University"
        }
      ], 
      "surname": "Ghosh", 
      "email": "mg2338@cornell.edu", 
      "full_name": "Ghosh, Mitrajyoti", 
      "given_names": "Mitrajyoti"
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA", 
          "organization": "Cornell University"
        }
      ], 
      "surname": "Grossman", 
      "email": "yg73@cornell.edu", 
      "full_name": "Grossman, Yuval", 
      "given_names": "Yuval"
    }, 
    {
      "affiliations": [
        {
          "country": "Japan", 
          "value": "Institute for Advanced Research, Nagoya University, Nagoya, 464-8601, Japan", 
          "organization": "Nagoya University"
        }, 
        {
          "country": "Japan", 
          "value": "Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, 464-8602, Japan", 
          "organization": "Nagoya University"
        }, 
        {
          "country": "Japan", 
          "value": "KEK Theory Center, IPNS, KEK, Tsukuba, 305-0801, Japan", 
          "organization": "KEK Theory Center, IPNS, KEK"
        }, 
        {
          "country": "China", 
          "value": "CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China", 
          "organization": "Chinese Academy of Sciences"
        }
      ], 
      "surname": "Kitahara", 
      "email": "teppeik@kmi.nagoya-u.ac.jp", 
      "full_name": "Kitahara, Teppei", 
      "given_names": "Teppei"
    }, 
    {
      "affiliations": [
        {
          "country": "UK", 
          "value": "Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom", 
          "organization": "University of Manchester"
        }
      ], 
      "surname": "Schacht", 
      "email": "stefan.schacht@manchester.ac.uk", 
      "full_name": "Schacht, Stefan", 
      "given_names": "Stefan"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "A precision relation between \u0393(K \u2192 \u03bc + \u03bc  \u2212 )(t) and   <math> <mi>B</mi> <mfenced> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>\u2192</mo> <msup> <mi>\u03bc</mi> <mo>+</mo> </msup> <msup> <mi>\u03bc</mi> <mo>\u2212</mo> </msup> </mrow> </mfenced> <mo>/</mo> <mi>B</mi> <mfenced> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>\u2192</mo> <mi>\u03b3\u03b3</mi> </mrow> </mfenced> </math>  $$ \\mathcal{B}\\left({K}_L\\to {\\mu}^{+}{\\mu}^{-}\\right)/\\mathcal{B}\\left({K}_L\\to \\gamma \\gamma \\right) $$"
    }
  ], 
  "dois": [
    {
      "value": "10.1007/JHEP03(2023)014"
    }
  ], 
  "publication_info": [
    {
      "page_end": "19", 
      "journal_title": "Journal of High Energy Physics", 
      "material": "article", 
      "journal_volume": "2023", 
      "artid": "JHEP03(2023)014", 
      "year": 2023, 
      "page_start": "1", 
      "journal_issue": "3"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2023-06-24T00:31:17.006456", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "40dbafc0122611ee91ac6ee2827c7def"
  }, 
  "page_nr": [
    19
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2023"
    }
  ], 
  "control_number": "76195", 
  "record_creation_date": "2023-03-06T09:30:12.759531", 
  "_files": [
    {
      "checksum": "md5:96176239dadafe02a4a365c6fcb89ff1", 
      "filetype": "xml", 
      "bucket": "9fc6a1db-2b72-4c85-9457-d93eb6cf5948", 
      "version_id": "2e820799-5b97-4c14-b559-80a26e3cfdc2", 
      "key": "10.1007/JHEP03(2023)014.xml", 
      "size": 22492
    }, 
    {
      "checksum": "md5:974a2836ff4d2805cbd72304efaa991c", 
      "filetype": "pdf/a", 
      "bucket": "9fc6a1db-2b72-4c85-9457-d93eb6cf5948", 
      "version_id": "ef563307-a0d7-463f-8411-dcca8bb3eac6", 
      "key": "10.1007/JHEP03(2023)014_a.pdf", 
      "size": 545014
    }
  ], 
  "collections": [
    {
      "primary": "Journal of High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph"
      ], 
      "value": "2211.03804"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We find that the phase appearing in the unitarity relation between   <math> <mi>B</mi> <mfenced> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>\u2192</mo> <msup> <mi>\u03bc</mi> <mo>+</mo> </msup> <msup> <mi>\u03bc</mi> <mo>\u2212</mo> </msup> </mrow> </mfenced> </math>  $$ \\mathcal{B}\\left({K}_L\\to {\\mu}^{+}{\\mu}^{-}\\right) $$  and   <math> <mi>B</mi> <mfenced> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>\u2192</mo> <mi>\u03b3\u03b3</mi> </mrow> </mfenced> </math>  $$ \\mathcal{B}\\left({K}_L\\to \\gamma \\gamma \\right) $$  is equal to the phase shift in the interference term of the time- dependent K \u2192 \u03bc + \u03bc  \u2212  decay. A probe of this relation at future kaon facilities constitutes a Standard Model test with a theory precision of about 2%. The phase has further importance for sensitivity studies regarding the measurement of the time-dependent K \u2192 \u03bc + \u03bc  \u2212  decay rate to extract the CKM matrix element combination   <math> <mo>\u2223</mo> <msub> <mi>V</mi> <mi>ts</mi> </msub> <msub> <mi>V</mi> <mi>td</mi> </msub> <mo>sin</mo> <mfenced> <mrow> <mi>\u03b2</mi> <mo>+</mo> <msub> <mi>\u03b2</mi> <mi>s</mi> </msub> </mrow> </mfenced> <mo>\u2223</mo> <mo>\u2248</mo> <msup> <mi>A</mi> <mn>2</mn> </msup> <msup> <mi>\u03bb</mi> <mn>5</mn> </msup> <mover> <mi>\u03b7</mi> <mo>\u00af</mo> </mover> </math>  $$ \\mid {V}_{ts}{V}_{td}\\sin \\left(\\beta +{\\beta}_s\\right)\\mid \\approx {A}^2{\\lambda}^5\\overline{\\eta} $$ . We find a model-independent theoretically clean prediction, cos2 \u03c6 0 = 0.96 \u00b1 0.03. The quoted error is a combination of the theoretical and experimental errors, and both of them are expected to shrink in the future. Using input from the large-N  C  limit within chiral perturbation theory, we find a theory preference towards solutions with negative cos \u03c6 0, reducing a four-fold ambiguity in the angle \u03c6 0 to a two-fold one."
    }
  ], 
  "imprints": [
    {
      "date": "2023-03-02", 
      "publisher": "Springer"
    }
  ]
}
Published on:
02 March 2023
Publisher:
Springer
Published in:
Journal of High Energy Physics , Volume 2023 (2023)
Issue 3
Pages 1-19
DOI:
https://doi.org/10.1007/JHEP03(2023)014
arXiv:
2211.03804
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: