We find that the phase appearing in the unitarity relation between $$ \mathcal{B}\left({K}_L\to {\mu}^{+}{\mu}^{-}\right) $$ and $$ \mathcal{B}\left({K}_L\to \gamma \gamma \right) $$ is equal to the phase shift in the interference term of the time- dependent K → μ + μ − decay. A probe of this relation at future kaon facilities constitutes a Standard Model test with a theory precision of about 2%. The phase has further importance for sensitivity studies regarding the measurement of the time-dependent K → μ + μ − decay rate to extract the CKM matrix element combination $$ \mid {V}_{ts}{V}_{td}\sin \left(\beta +{\beta}_s\right)\mid \approx {A}^2{\lambda}^5\overline{\eta} $$ . We find a model-independent theoretically clean prediction, cos2 φ 0 = 0.96 ± 0.03. The quoted error is a combination of the theoretical and experimental errors, and both of them are expected to shrink in the future. Using input from the large-N C limit within chiral perturbation theory, we find a theory preference towards solutions with negative cos φ 0, reducing a four-fold ambiguity in the angle φ 0 to a two-fold one.
{ "_oai": { "updated": "2023-06-24T00:34:22Z", "id": "oai:repo.scoap3.org:76195", "sets": [ "JHEP" ] }, "authors": [ { "affiliations": [ { "country": "USA", "value": "Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA", "organization": "Cornell University" } ], "surname": "Dery", "email": "avital.dery@cornell.edu", "full_name": "Dery, Avital", "given_names": "Avital" }, { "affiliations": [ { "country": "USA", "value": "Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA", "organization": "Cornell University" } ], "surname": "Ghosh", "email": "mg2338@cornell.edu", "full_name": "Ghosh, Mitrajyoti", "given_names": "Mitrajyoti" }, { "affiliations": [ { "country": "USA", "value": "Department of Physics, LEPP, Cornell University, Ithaca, NY, 14853, USA", "organization": "Cornell University" } ], "surname": "Grossman", "email": "yg73@cornell.edu", "full_name": "Grossman, Yuval", "given_names": "Yuval" }, { "affiliations": [ { "country": "Japan", "value": "Institute for Advanced Research, Nagoya University, Nagoya, 464-8601, Japan", "organization": "Nagoya University" }, { "country": "Japan", "value": "Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, 464-8602, Japan", "organization": "Nagoya University" }, { "country": "Japan", "value": "KEK Theory Center, IPNS, KEK, Tsukuba, 305-0801, Japan", "organization": "KEK Theory Center, IPNS, KEK" }, { "country": "China", "value": "CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China", "organization": "Chinese Academy of Sciences" } ], "surname": "Kitahara", "email": "teppeik@kmi.nagoya-u.ac.jp", "full_name": "Kitahara, Teppei", "given_names": "Teppei" }, { "affiliations": [ { "country": "UK", "value": "Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom", "organization": "University of Manchester" } ], "surname": "Schacht", "email": "stefan.schacht@manchester.ac.uk", "full_name": "Schacht, Stefan", "given_names": "Stefan" } ], "titles": [ { "source": "Springer", "title": "A precision relation between \u0393(K \u2192 \u03bc + \u03bc \u2212 )(t) and <math> <mi>B</mi> <mfenced> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>\u2192</mo> <msup> <mi>\u03bc</mi> <mo>+</mo> </msup> <msup> <mi>\u03bc</mi> <mo>\u2212</mo> </msup> </mrow> </mfenced> <mo>/</mo> <mi>B</mi> <mfenced> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>\u2192</mo> <mi>\u03b3\u03b3</mi> </mrow> </mfenced> </math> $$ \\mathcal{B}\\left({K}_L\\to {\\mu}^{+}{\\mu}^{-}\\right)/\\mathcal{B}\\left({K}_L\\to \\gamma \\gamma \\right) $$" } ], "dois": [ { "value": "10.1007/JHEP03(2023)014" } ], "publication_info": [ { "page_end": "19", "journal_title": "Journal of High Energy Physics", "material": "article", "journal_volume": "2023", "artid": "JHEP03(2023)014", "year": 2023, "page_start": "1", "journal_issue": "3" } ], "$schema": "http://repo.scoap3.org/schemas/hep.json", "acquisition_source": { "date": "2023-06-24T00:31:17.006456", "source": "Springer", "method": "Springer", "submission_number": "40dbafc0122611ee91ac6ee2827c7def" }, "page_nr": [ 19 ], "license": [ { "url": "https://creativecommons.org/licenses//by/4.0", "license": "CC-BY-4.0" } ], "copyright": [ { "holder": "The Author(s)", "year": "2023" } ], "control_number": "76195", "record_creation_date": "2023-03-06T09:30:12.759531", "_files": [ { "checksum": "md5:96176239dadafe02a4a365c6fcb89ff1", "filetype": "xml", "bucket": "9fc6a1db-2b72-4c85-9457-d93eb6cf5948", "version_id": "2e820799-5b97-4c14-b559-80a26e3cfdc2", "key": "10.1007/JHEP03(2023)014.xml", "size": 22492 }, { "checksum": "md5:974a2836ff4d2805cbd72304efaa991c", "filetype": "pdf/a", "bucket": "9fc6a1db-2b72-4c85-9457-d93eb6cf5948", "version_id": "ef563307-a0d7-463f-8411-dcca8bb3eac6", "key": "10.1007/JHEP03(2023)014_a.pdf", "size": 545014 } ], "collections": [ { "primary": "Journal of High Energy Physics" } ], "arxiv_eprints": [ { "categories": [ "hep-ph" ], "value": "2211.03804" } ], "abstracts": [ { "source": "Springer", "value": "We find that the phase appearing in the unitarity relation between <math> <mi>B</mi> <mfenced> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>\u2192</mo> <msup> <mi>\u03bc</mi> <mo>+</mo> </msup> <msup> <mi>\u03bc</mi> <mo>\u2212</mo> </msup> </mrow> </mfenced> </math> $$ \\mathcal{B}\\left({K}_L\\to {\\mu}^{+}{\\mu}^{-}\\right) $$ and <math> <mi>B</mi> <mfenced> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>\u2192</mo> <mi>\u03b3\u03b3</mi> </mrow> </mfenced> </math> $$ \\mathcal{B}\\left({K}_L\\to \\gamma \\gamma \\right) $$ is equal to the phase shift in the interference term of the time- dependent K \u2192 \u03bc + \u03bc \u2212 decay. A probe of this relation at future kaon facilities constitutes a Standard Model test with a theory precision of about 2%. The phase has further importance for sensitivity studies regarding the measurement of the time-dependent K \u2192 \u03bc + \u03bc \u2212 decay rate to extract the CKM matrix element combination <math> <mo>\u2223</mo> <msub> <mi>V</mi> <mi>ts</mi> </msub> <msub> <mi>V</mi> <mi>td</mi> </msub> <mo>sin</mo> <mfenced> <mrow> <mi>\u03b2</mi> <mo>+</mo> <msub> <mi>\u03b2</mi> <mi>s</mi> </msub> </mrow> </mfenced> <mo>\u2223</mo> <mo>\u2248</mo> <msup> <mi>A</mi> <mn>2</mn> </msup> <msup> <mi>\u03bb</mi> <mn>5</mn> </msup> <mover> <mi>\u03b7</mi> <mo>\u00af</mo> </mover> </math> $$ \\mid {V}_{ts}{V}_{td}\\sin \\left(\\beta +{\\beta}_s\\right)\\mid \\approx {A}^2{\\lambda}^5\\overline{\\eta} $$ . We find a model-independent theoretically clean prediction, cos2 \u03c6 0 = 0.96 \u00b1 0.03. The quoted error is a combination of the theoretical and experimental errors, and both of them are expected to shrink in the future. Using input from the large-N C limit within chiral perturbation theory, we find a theory preference towards solutions with negative cos \u03c6 0, reducing a four-fold ambiguity in the angle \u03c6 0 to a two-fold one." } ], "imprints": [ { "date": "2023-03-02", "publisher": "Springer" } ] }