f(Q, T) gravity, its covariant formulation, energy conservation and phase-space analysis

Tee-How Loo (Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia) ; Raja Solanki (Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India) ; Avik De (Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Cheras, 43000, Malaysia) ; P. Sahoo (Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India)

In the present article we analyze the matter-geometry coupled f(Q, T) theory of gravity. We offer the fully covariant formulation of the theory, with which we construct the correct energy balance equation and employ it to conduct a dynamical system analysis in a spatially flat Friedmann–Lemaître–Robertson–Walker spacetime. We consider three different functional forms of the f(Q, T) function, specifically, $$f(Q,T)=\alpha Q+ \beta T$$ f ( Q , T ) = α Q + β T , $$f(Q,T)=\alpha Q+ \beta T^2$$ f ( Q , T ) = α Q + β T 2 , and $$f(Q,T)=Q+ \alpha Q^2+ \beta T$$ f ( Q , T ) = Q + α Q 2 + β T . We attempt to investigate the physical capabilities of these models to describe various cosmological epochs. We calculate Friedmann-like equations in each case and introduce some phase space variables to simplify the equations in more concise forms. We observe that the linear model $$f(Q,T)=\alpha Q+ \beta T$$ f ( Q , T ) = α Q + β T with $$\beta =0$$ β = 0 is completely equivalent to the GR case without cosmological constant $$\Lambda $$ Λ . Further, we find that the model $$f(Q,T)=\alpha Q+ \beta T^2$$ f ( Q , T ) = α Q + β T 2 with $$\beta \ne 0$$ β 0 successfully depicts the observed transition from decelerated phase to an accelerated phase of the universe. Lastly, we find that the model $$f(Q,T)= Q+ \alpha Q^2+ \beta T$$ f ( Q , T ) = Q + α Q 2 + β T with $$\alpha \ne 0$$ α 0 represents an accelerated de-Sitter epoch for the constraints $$\beta < -1$$ β < - 1 or $$ \beta \ge 0$$ β 0 .

{
  "_oai": {
    "updated": "2023-04-27T18:30:55Z", 
    "id": "oai:repo.scoap3.org:76719", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Malaysia", 
          "value": "Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia", 
          "organization": "Universiti Malaya"
        }
      ], 
      "surname": "Loo", 
      "email": "looth@um.edu.my", 
      "full_name": "Loo, Tee-How", 
      "given_names": "Tee-How"
    }, 
    {
      "affiliations": [
        {
          "country": "India", 
          "value": "Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India", 
          "organization": "Birla Institute of Technology and Science-Pilani"
        }
      ], 
      "surname": "Solanki", 
      "email": "rajasolanki8268@gmail.com", 
      "full_name": "Solanki, Raja", 
      "given_names": "Raja"
    }, 
    {
      "affiliations": [
        {
          "country": "Malaysia", 
          "value": "Department of Mathematical and Actuarial Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Cheras, 43000, Malaysia", 
          "organization": "Universiti Tunku Abdul Rahman"
        }
      ], 
      "surname": "De", 
      "email": "avikde@utar.edu.my", 
      "full_name": "De, Avik", 
      "given_names": "Avik"
    }, 
    {
      "affiliations": [
        {
          "country": "India", 
          "value": "Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India", 
          "organization": "Birla Institute of Technology and Science-Pilani"
        }
      ], 
      "surname": "Sahoo", 
      "email": "pksahoo@hyderabad.bits-pilani.ac.in", 
      "full_name": "Sahoo, P.", 
      "given_names": "P."
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "f(Q, T) gravity, its covariant formulation, energy conservation and phase-space analysis"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-023-11391-4"
    }
  ], 
  "publication_info": [
    {
      "page_end": "9", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "83", 
      "artid": "s10052-023-11391-4", 
      "year": 2023, 
      "page_start": "1", 
      "journal_issue": "3"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2023-04-27T18:30:40.199754", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "84b87996e52911ed80743e7708eaa62a"
  }, 
  "page_nr": [
    9
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2023"
    }
  ], 
  "control_number": "76719", 
  "record_creation_date": "2023-03-28T18:30:17.703798", 
  "_files": [
    {
      "checksum": "md5:edabafbad13239851d69b47621aa09bb", 
      "filetype": "xml", 
      "bucket": "a29cd29d-c8d9-4296-b70e-64fc8c27d350", 
      "version_id": "b3e4ec4e-a5f6-4189-b54f-41e2bda4e3e6", 
      "key": "10.1140/epjc/s10052-023-11391-4.xml", 
      "size": 25600
    }, 
    {
      "checksum": "md5:640b7d8de9529f3486713fb8179bb6f4", 
      "filetype": "pdf/a", 
      "bucket": "a29cd29d-c8d9-4296-b70e-64fc8c27d350", 
      "version_id": "7419a451-72f2-463c-98ce-6cda11117561", 
      "key": "10.1140/epjc/s10052-023-11391-4_a.pdf", 
      "size": 528731
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "In the present article we analyze the matter-geometry coupled f(Q, T) theory of gravity. We offer the fully covariant formulation of the theory, with which we construct the correct energy balance equation and employ it to conduct a dynamical system analysis in a spatially flat Friedmann\u2013Lema\u00eetre\u2013Robertson\u2013Walker spacetime. We consider three different functional forms of the f(Q, T) function, specifically,  $$f(Q,T)=\\alpha Q+ \\beta T$$  <math> <mrow> <mi>f</mi> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>T</mi> <mo>)</mo> <mo>=</mo> <mi>\u03b1</mi> <mi>Q</mi> <mo>+</mo> <mi>\u03b2</mi> <mi>T</mi> </mrow> </math>  ,  $$f(Q,T)=\\alpha Q+ \\beta T^2$$  <math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>\u03b1</mi> <mi>Q</mi> <mo>+</mo> <mi>\u03b2</mi> <msup> <mi>T</mi> <mn>2</mn> </msup> </mrow> </math>  , and  $$f(Q,T)=Q+ \\alpha Q^2+ \\beta T$$  <math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Q</mi> <mo>+</mo> <mi>\u03b1</mi> <msup> <mi>Q</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>\u03b2</mi> <mi>T</mi> </mrow> </math>  . We attempt to investigate the physical capabilities of these models to describe various cosmological epochs. We calculate Friedmann-like equations in each case and introduce some phase space variables to simplify the equations in more concise forms. We observe that the linear model  $$f(Q,T)=\\alpha Q+ \\beta T$$  <math> <mrow> <mi>f</mi> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>T</mi> <mo>)</mo> <mo>=</mo> <mi>\u03b1</mi> <mi>Q</mi> <mo>+</mo> <mi>\u03b2</mi> <mi>T</mi> </mrow> </math>   with  $$\\beta =0$$  <math> <mrow> <mi>\u03b2</mi> <mo>=</mo> <mn>0</mn> </mrow> </math>   is completely equivalent to the GR case without cosmological constant  $$\\Lambda $$  <math> <mi>\u039b</mi> </math>  . Further, we find that the model  $$f(Q,T)=\\alpha Q+ \\beta T^2$$  <math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>\u03b1</mi> <mi>Q</mi> <mo>+</mo> <mi>\u03b2</mi> <msup> <mi>T</mi> <mn>2</mn> </msup> </mrow> </math>   with  $$\\beta \\ne 0$$  <math> <mrow> <mi>\u03b2</mi> <mo>\u2260</mo> <mn>0</mn> </mrow> </math>   successfully depicts the observed transition from decelerated phase to an accelerated phase of the universe. Lastly, we find that the model  $$f(Q,T)= Q+ \\alpha Q^2+ \\beta T$$  <math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>,</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>Q</mi> <mo>+</mo> <mi>\u03b1</mi> <msup> <mi>Q</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>\u03b2</mi> <mi>T</mi> </mrow> </math>   with  $$\\alpha \\ne 0$$  <math> <mrow> <mi>\u03b1</mi> <mo>\u2260</mo> <mn>0</mn> </mrow> </math>   represents an accelerated de-Sitter epoch for the constraints  $$\\beta &lt; -1$$  <math> <mrow> <mi>\u03b2</mi> <mo>&lt;</mo> <mo>-</mo> <mn>1</mn> </mrow> </math>   or  $$ \\beta \\ge 0$$  <math> <mrow> <mi>\u03b2</mi> <mo>\u2265</mo> <mn>0</mn> </mrow> </math>  ."
    }
  ], 
  "imprints": [
    {
      "date": "2023-03-28", 
      "publisher": "Springer"
    }
  ]
}
Published on:
28 March 2023
Publisher:
Springer
Published in:
European Physical Journal C , Volume 83 (2023)
Issue 3
Pages 1-9
DOI:
https://doi.org/10.1140/epjc/s10052-023-11391-4
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: