Analysis of rescattering effects in $$3\pi $$ 3 π final states

Dominik Stamen (Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universität Bonn, Bonn, 53115, Germany) ; Tobias Isken (Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universität Bonn, Bonn, 53115, Germany; Helmholtz Forschungsakademie Hessen für FAIR (HFHF), GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, Darmstadt, 64291, Germany) ; Bastian Kubis (Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universität Bonn, Bonn, 53115, Germany) ; Mikhail Mikhasenko (ORIGINS Excellence Cluster, Ludwig-Maximilians-Universität München, Munich, 80939, Germany) ; Malwin Niehus (Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universität Bonn, Bonn, 53115, Germany)

Decays into three particles are often described in terms of two-body resonances and a non-interacting spectator particle. To go beyond this simplest isobar model, crossed-channel rescattering effects need to be accounted for. We quantify the importance of these rescattering effects in three-pion systems for different decay masses and angular-momentum quantum numbers. We provide amplitude decompositions for four decay processes with total $$J^{PC} = 0^{--}$$ J PC = 0 - - , $$1^{--}$$ 1 - - , $$1^{-+}$$ 1 - + , and $$2^{++}$$ 2 + + , all of which decay predominantly as $$\rho \pi $$ ρ π states. Two-pion rescattering is described in terms of an Omnès function, which incorporates the $$\rho $$ ρ resonance. Inclusion of crossed-channel effects is achieved by solving the Khuri–Treiman integral equations. The unbinned log-likelihood estimator is used to determine the significance of the rescattering effects beyond two-body resonances; we compute the minimum number of events necessary to unambiguously find these in future Dalitz-plot analyses. Kinematic effects that enhance or dilute the rescattering are identified for the selected set of quantum numbers and various masses.

{
  "_oai": {
    "updated": "2023-07-18T00:31:56Z", 
    "id": "oai:repo.scoap3.org:78325", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Helmholtz-Institut f\u00fcr Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universit\u00e4t Bonn, Bonn, 53115, Germany", 
          "organization": "Universit\u00e4t Bonn"
        }
      ], 
      "surname": "Stamen", 
      "email": "stamen@hiskp.uni-bonn.de", 
      "full_name": "Stamen, Dominik", 
      "given_names": "Dominik"
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Helmholtz-Institut f\u00fcr Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universit\u00e4t Bonn, Bonn, 53115, Germany", 
          "organization": "Universit\u00e4t Bonn"
        }, 
        {
          "country": "Germany", 
          "value": "Helmholtz Forschungsakademie Hessen f\u00fcr FAIR (HFHF), GSI Helmholtzzentrum f\u00fcr Schwerionenforschung GmbH, Planckstra\u00dfe 1, Darmstadt, 64291, Germany", 
          "organization": "Helmholtz Forschungsakademie Hessen f\u00fcr FAIR (HFHF), GSI Helmholtzzentrum f\u00fcr Schwerionenforschung GmbH"
        }
      ], 
      "surname": "Isken", 
      "given_names": "Tobias", 
      "full_name": "Isken, Tobias"
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Helmholtz-Institut f\u00fcr Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universit\u00e4t Bonn, Bonn, 53115, Germany", 
          "organization": "Universit\u00e4t Bonn"
        }
      ], 
      "surname": "Kubis", 
      "email": "kubis@hiskp.uni-bonn.de", 
      "full_name": "Kubis, Bastian", 
      "given_names": "Bastian"
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "ORIGINS Excellence Cluster, Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Munich, 80939, Germany", 
          "organization": "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen"
        }
      ], 
      "surname": "Mikhasenko", 
      "email": "mikhail.mikhasenko@cern.ch", 
      "full_name": "Mikhasenko, Mikhail", 
      "given_names": "Mikhail"
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Helmholtz-Institut f\u00fcr Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universit\u00e4t Bonn, Bonn, 53115, Germany", 
          "organization": "Universit\u00e4t Bonn"
        }
      ], 
      "surname": "Niehus", 
      "given_names": "Malwin", 
      "full_name": "Niehus, Malwin"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Analysis of rescattering effects in  $$3\\pi $$  <math> <mrow> <mn>3</mn> <mi>\u03c0</mi> </mrow> </math>   final states"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-023-11665-x"
    }
  ], 
  "publication_info": [
    {
      "page_end": "22", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "83", 
      "artid": "s10052-023-11665-x", 
      "year": 2023, 
      "page_start": "1", 
      "journal_issue": "6"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2023-07-18T00:30:47.505714", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "3ab9a59a250211ee91ac6ee2827c7def"
  }, 
  "page_nr": [
    22
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2023"
    }
  ], 
  "control_number": "78325", 
  "record_creation_date": "2023-06-15T15:30:20.875081", 
  "_files": [
    {
      "checksum": "md5:00499aa5461928d0b4ba7dfe233a7b75", 
      "filetype": "xml", 
      "bucket": "8f335edd-2b68-4957-b37c-d340b7d8e0bc", 
      "version_id": "feadb12b-3a04-46a2-83ce-1868af34064c", 
      "key": "10.1140/epjc/s10052-023-11665-x.xml", 
      "size": 20525
    }, 
    {
      "checksum": "md5:f3623332507dd50335cf963a3e425788", 
      "filetype": "pdf/a", 
      "bucket": "8f335edd-2b68-4957-b37c-d340b7d8e0bc", 
      "version_id": "8d7043c8-dcc7-4bc0-9b00-d7f7fa2be1ef", 
      "key": "10.1140/epjc/s10052-023-11665-x_a.pdf", 
      "size": 4802471
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph", 
        "hep-ex", 
        "nucl-th"
      ], 
      "value": "2212.11767v2"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "Decays into three particles are often described in terms of two-body resonances and a non-interacting spectator particle. To go beyond this simplest isobar model, crossed-channel rescattering effects need to be accounted for. We quantify the importance of these rescattering effects in three-pion systems for different decay masses and angular-momentum quantum numbers. We provide amplitude decompositions for four decay processes with total  $$J^{PC} = 0^{--}$$  <math> <mrow> <msup> <mi>J</mi> <mrow> <mi>PC</mi> </mrow> </msup> <mo>=</mo> <msup> <mn>0</mn> <mrow> <mo>-</mo> <mo>-</mo> </mrow> </msup> </mrow> </math>  ,  $$1^{--}$$  <math> <msup> <mn>1</mn> <mrow> <mo>-</mo> <mo>-</mo> </mrow> </msup> </math>  ,  $$1^{-+}$$  <math> <msup> <mn>1</mn> <mrow> <mo>-</mo> <mo>+</mo> </mrow> </msup> </math>  , and  $$2^{++}$$  <math> <msup> <mn>2</mn> <mrow> <mo>+</mo> <mo>+</mo> </mrow> </msup> </math>  , all of which decay predominantly as  $$\\rho \\pi $$  <math> <mrow> <mi>\u03c1</mi> <mi>\u03c0</mi> </mrow> </math>   states. Two-pion rescattering is described in terms of an Omn\u00e8s function, which incorporates the  $$\\rho $$  <math> <mi>\u03c1</mi> </math>   resonance. Inclusion of crossed-channel effects is achieved by solving the Khuri\u2013Treiman integral equations. The unbinned log-likelihood estimator is used to determine the significance of the rescattering effects beyond two-body resonances; we compute the minimum number of events necessary to unambiguously find these in future Dalitz-plot analyses. Kinematic effects that enhance or dilute the rescattering are identified for the selected set of quantum numbers and various masses."
    }
  ], 
  "imprints": [
    {
      "date": "2023-06-15", 
      "publisher": "Springer"
    }
  ]
}
Published on:
15 June 2023
Publisher:
Springer
Published in:
European Physical Journal C , Volume 83 (2023)
Issue 6
Pages 1-22
DOI:
https://doi.org/10.1140/epjc/s10052-023-11665-x
arXiv:
2212.11767v2
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: