The shadows of accelerating Kerr-Newman black hole and constraints from M87*

Tao-Tao Sui (College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, China) ; Qi-Ming Fu (Institute of Physics, Shaanxi University of Technology, Hanzhong, China; Department of Physics, College of Sciences, Northeastern University, Shenyang, China) ; Wen-Di Guo (Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou, China)

In this paper, we study the influence of the parameters for the accelerating Kerr-Newman black hole on the shadows and the constraints, extensively. We find that the rotating parameter a, the charge parameter e, and the inclination angle θ0 affect the shadow qualitatively similar to that of Kerr-Newman black holes. The result shows that the size of the shadow will scale down with the accelerating factor A. Besides, the factor A also can affect the best viewing angles, which make the observations maximum deviate from θ0=π2, and the degree of the deviations are less than 1%. Then, we assume the M87* as an accelerating Kerr-Newman black hole with the mass M=6.5×109M and the distance r0=16.8Mpc. Combining the EHT observations, we find that neither the observations, circularity deviation ΔC or axial ratio Dx can distinguish the accelerating black hole or not. However, the characteristic areal-radius of the shadow curve Ra can give corresponding constraints on the parameters of the accelerating Kerr-Newman black hole. The result shows that the bigger accelerating factor A is, the stronger constraints on the rotating parameter a and charged parameter e. The maximum range of the accelerating factor is Ar00.558 for a accelerating Schwarzschild case with (a/M=e/M=0), and for an extremely slow accelerating case (Ar00.01), the ranges of rotating parameter a and charged parameter e are a/M(0,1) and e/M(0,0.9).

{
  "license": [
    {
      "url": "http://creativecommons.org/licenses/by/3.0/", 
      "license": "CC-BY-3.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "statement": "The Author(s)", 
      "year": "2023"
    }
  ], 
  "control_number": "79770", 
  "_oai": {
    "updated": "2023-09-26T15:31:23Z", 
    "id": "oai:repo.scoap3.org:79770", 
    "sets": [
      "PLB"
    ]
  }, 
  "authors": [
    {
      "surname": "Sui", 
      "given_names": "Tao-Tao", 
      "affiliations": [
        {
          "country": "China", 
          "value": "College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, China"
        }
      ], 
      "full_name": "Sui, Tao-Tao", 
      "orcid": "0000-0003-3541-6842", 
      "email": "suitt14@lzu.edu.cn"
    }, 
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "Institute of Physics, Shaanxi University of Technology, Hanzhong, China"
        }, 
        {
          "country": "China", 
          "value": "Department of Physics, College of Sciences, Northeastern University, Shenyang, China"
        }
      ], 
      "surname": "Fu", 
      "given_names": "Qi-Ming", 
      "full_name": "Fu, Qi-Ming"
    }, 
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou, China"
        }
      ], 
      "surname": "Guo", 
      "email": "guowd@lzu.edu.cn", 
      "full_name": "Guo, Wen-Di", 
      "given_names": "Wen-Di"
    }
  ], 
  "_files": [
    {
      "checksum": "md5:633f61bb1e99c60f5442ed3fe8f53008", 
      "filetype": "xml", 
      "bucket": "08e401b2-bd05-493e-bf65-feace43b5777", 
      "version_id": "fe3389c1-faf9-4764-9304-48294afabaf8", 
      "key": "10.1016/j.physletb.2023.138135.xml", 
      "size": 232266
    }, 
    {
      "checksum": "md5:54ddb84a1076ec221439a74b936647b9", 
      "filetype": "pdf", 
      "bucket": "08e401b2-bd05-493e-bf65-feace43b5777", 
      "version_id": "699d74a3-9bf1-4fa2-a2c3-f054fbb6f200", 
      "key": "10.1016/j.physletb.2023.138135.pdf", 
      "size": 892381
    }, 
    {
      "checksum": "md5:d8738215fdc195410eb9c45c54b10cae", 
      "filetype": "pdf/a", 
      "bucket": "08e401b2-bd05-493e-bf65-feace43b5777", 
      "version_id": "f49adb26-d240-4537-a431-ead2f3f7f670", 
      "key": "10.1016/j.physletb.2023.138135_a.pdf", 
      "size": 931830
    }
  ], 
  "record_creation_date": "2023-08-23T12:30:44.570499", 
  "titles": [
    {
      "source": "Elsevier", 
      "title": "The shadows of accelerating Kerr-Newman black hole and constraints from M87*"
    }
  ], 
  "collections": [
    {
      "primary": "Physics Letters B"
    }
  ], 
  "dois": [
    {
      "value": "10.1016/j.physletb.2023.138135"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "845 C", 
      "journal_title": "Physics Letters B", 
      "material": "article", 
      "artid": "138135", 
      "year": 2023
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "abstracts": [
    {
      "source": "Elsevier", 
      "value": "In this paper, we study the influence of the parameters for the accelerating Kerr-Newman black hole on the shadows and the constraints, extensively. We find that the rotating parameter a, the charge parameter e, and the inclination angle <math><msub><mrow><mi>\u03b8</mi></mrow><mrow><mn>0</mn></mrow></msub></math> affect the shadow qualitatively similar to that of Kerr-Newman black holes. The result shows that the size of the shadow will scale down with the accelerating factor A. Besides, the factor A also can affect the best viewing angles, which make the observations maximum deviate from <math><msub><mrow><mi>\u03b8</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mfrac><mrow><mi>\u03c0</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math>, and the degree of the deviations are less than 1%. Then, we assume the M87* as an accelerating Kerr-Newman black hole with the mass <math><mi>M</mi><mo>=</mo><mn>6.5</mn><mo>\u00d7</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup><msub><mrow><mi>M</mi></mrow><mrow><mo>\u2299</mo></mrow></msub></math> and the distance <math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>16.8</mn><mi>M</mi><mi>p</mi><mi>c</mi></math>. Combining the EHT observations, we find that neither the observations, circularity deviation \u0394C or axial ratio <math><msub><mrow><mi>D</mi></mrow><mrow><mi>x</mi></mrow></msub></math> can distinguish the accelerating black hole or not. However, the characteristic areal-radius of the shadow curve <math><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub></math> can give corresponding constraints on the parameters of the accelerating Kerr-Newman black hole. The result shows that the bigger accelerating factor A is, the stronger constraints on the rotating parameter a and charged parameter e. The maximum range of the accelerating factor is <math><mi>A</mi><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>\u2264</mo><mn>0.558</mn></math> for a accelerating Schwarzschild case with <math><mo>(</mo><mi>a</mi><mo>/</mo><mi>M</mi><mo>=</mo><mi>e</mi><mo>/</mo><mi>M</mi><mo>=</mo><mn>0</mn><mo>)</mo></math>, and for an extremely slow accelerating case <math><mo>(</mo><mi>A</mi><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>\u2264</mo><mn>0.01</mn><mo>)</mo></math>, the ranges of rotating parameter a and charged parameter e are <math><mi>a</mi><mo>/</mo><mi>M</mi><mo>\u2208</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math> and <math><mi>e</mi><mo>/</mo><mi>M</mi><mo>\u2208</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0.9</mn><mo>)</mo></math>."
    }
  ], 
  "imprints": [
    {
      "date": "2023-09-26", 
      "publisher": "Elsevier"
    }
  ], 
  "acquisition_source": {
    "date": "2023-09-26T15:30:56.958075", 
    "source": "Elsevier", 
    "method": "Elsevier", 
    "submission_number": "8e2fc7985c8111ee9688729695cabdc8"
  }
}
Published on:
26 September 2023
Publisher:
Elsevier
Published in:
Physics Letters B , Volume 845 C (2023)

Article ID: 138135
DOI:
https://doi.org/10.1016/j.physletb.2023.138135
Copyrights:
The Author(s)
Licence:
CC-BY-3.0

Fulltext files: