By calculating inequivalent classical r-matrices for the $$gl(2,{\mathbb {R}})$$ Lie algebra as solutions of (modified) classical Yang-Baxter equation ((m)CYBE), we classify the YB deformations of Wess-Zumino-Witten (WZW) model on the $$GL(2,{\mathbb {R}})$$ Lie group in twelve inequivalent families. Most importantly, it is shown that each of these models can be obtained from a Poisson-Lie T-dual $$\sigma $$ -model in the presence of the spectator fields when the dual Lie group is considered to be Abelian, i.e. all deformed models have Poisson-Lie symmetry just as undeformed WZW model on the $$GL(2,{\mathbb {R}})$$ . In this way, all deformed models are specified via spectator-dependent background matrices. For one case, the dual background is clearly found.
{ "_oai": { "updated": "2024-03-23T00:32:01Z", "id": "oai:repo.scoap3.org:80818", "sets": [ "EPJC" ] }, "authors": [ { "affiliations": [ { "country": "Iran", "value": "Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran", "organization": "Azarbaijan Shahid Madani University" } ], "surname": "Eghbali", "email": "eghbali978@gmail.com", "full_name": "Eghbali, Ali", "given_names": "Ali" }, { "affiliations": [ { "country": "Iran", "value": "Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran", "organization": "Azarbaijan Shahid Madani University" } ], "surname": "Parvizi", "email": "t.parvizi@azaruniv.ac.ir", "full_name": "Parvizi, Tayebe", "given_names": "Tayebe" }, { "affiliations": [ { "country": "Iran", "value": "Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran", "organization": "Azarbaijan Shahid Madani University" } ], "surname": "Rezaei-Aghdam", "email": "rezaei-a@azaruniv.ac.ir", "full_name": "Rezaei-Aghdam, Adel", "given_names": "Adel" } ], "titles": [ { "source": "Springer", "title": "Yang-Baxter deformations of the $$GL(2,{\\mathbb {R}})$$ <math> <mrow> <mi>G</mi> <mi>L</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> </math> WZW model and non-Abelian T-duality" } ], "dois": [ { "value": "10.1140/epjc/s10052-023-12084-8" } ], "publication_info": [ { "page_end": "12", "journal_title": "European Physical Journal C", "material": "article", "journal_volume": "83", "artid": "s10052-023-12084-8", "year": 2023, "page_start": "1", "journal_issue": "10" } ], "$schema": "http://repo.scoap3.org/schemas/hep.json", "acquisition_source": { "date": "2024-03-23T00:30:47.894590", "source": "Springer", "method": "Springer", "submission_number": "7ba03dd0e8ac11eeae4696b6a0e1ccbd" }, "page_nr": [ 12 ], "license": [ { "url": "https://creativecommons.org/licenses//by/4.0", "license": "CC-BY-4.0" } ], "copyright": [ { "holder": "The Author(s)", "year": "2023" } ], "control_number": "80818", "record_creation_date": "2023-10-11T12:30:12.859614", "_files": [ { "checksum": "md5:55aa8cf818f861402d9f9778338f3e44", "filetype": "xml", "bucket": "b18a44f1-fcc7-4de3-bcd0-66629345885f", "version_id": "0c812bad-c8e3-4239-a75c-5af7cd98ef1a", "key": "10.1140/epjc/s10052-023-12084-8.xml", "size": 15069 }, { "checksum": "md5:600636f1e4f2559d6ed65da8c4baf1dd", "filetype": "pdf/a", "bucket": "b18a44f1-fcc7-4de3-bcd0-66629345885f", "version_id": "29b57464-1c9c-4e10-ac93-4ba43e875161", "key": "10.1140/epjc/s10052-023-12084-8_a.pdf", "size": 378819 } ], "collections": [ { "primary": "European Physical Journal C" } ], "abstracts": [ { "source": "Springer", "value": "By calculating inequivalent classical r-matrices for the $$gl(2,{\\mathbb {R}})$$ <math> <mrow> <mi>g</mi> <mi>l</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> </math> Lie algebra as solutions of (modified) classical Yang-Baxter equation ((m)CYBE), we classify the YB deformations of Wess-Zumino-Witten (WZW) model on the $$GL(2,{\\mathbb {R}})$$ <math> <mrow> <mi>G</mi> <mi>L</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> </math> Lie group in twelve inequivalent families. Most importantly, it is shown that each of these models can be obtained from a Poisson-Lie T-dual $$\\sigma $$ <math> <mi>\u03c3</mi> </math> -model in the presence of the spectator fields when the dual Lie group is considered to be Abelian, i.e. all deformed models have Poisson-Lie symmetry just as undeformed WZW model on the $$GL(2,{\\mathbb {R}})$$ <math> <mrow> <mi>G</mi> <mi>L</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo> </mrow> </math> . In this way, all deformed models are specified via spectator-dependent background matrices. For one case, the dual background is clearly found." } ], "imprints": [ { "date": "2023-10-11", "publisher": "Springer" } ] }