More accurate σ GG h , Γ h GG AA Ψ ¯ Ψ $$ \sigma \left(\mathcal{GG}\to h\right),\Gamma \left(h\to \mathcal{GG},\mathcal{AA},\overline{\Psi}\Psi \right) $$ and Higgs width results via the geoSMEFT

Adam Martin (Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA) ; Michael Trott (Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California, USA; Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada)

We develop Standard Model Effective Field Theory (SMEFT) predictions of σ( GG $$ \mathcal{GG} $$ → h), Γ(h → GG $$ \mathcal{GG} $$ ), Γ(h → AA $$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h → Ψ ¯ Ψ $$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σ to a full set of corrections at O v ¯ T 2 / Λ 2 16 π 2 2 $$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and O v ¯ T 4 / Λ 4 $$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where v ¯ T $$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h → Ψ ¯ Ψ $$ \overline{\Psi}\Psi $$ ), we include results at O v ¯ T 2 / Λ 2 16 π 2 $$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleading m Ψ → 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.

{
  "_oai": {
    "updated": "2024-04-25T00:32:08Z", 
    "id": "oai:repo.scoap3.org:83036", 
    "sets": [
      "JHEP"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA", 
          "organization": "University of Notre Dame"
        }
      ], 
      "surname": "Martin", 
      "email": "amarti41@nd.edu", 
      "full_name": "Martin, Adam", 
      "given_names": "Adam"
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California, USA", 
          "organization": "California Institute of Technology"
        }, 
        {
          "country": "Canada", 
          "value": "Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada", 
          "organization": "Perimeter Institute for Theoretical Physics"
        }
      ], 
      "surname": "Trott", 
      "email": "michael.trott@cern.ch", 
      "full_name": "Trott, Michael", 
      "given_names": "Michael"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "More accurate   <math> <mi>\u03c3</mi> <mfenced> <mrow> <mi>GG</mi> <mo>\u2192</mo> <mi>h</mi> </mrow> </mfenced> <mo>,</mo> <mi>\u0393</mi> <mfenced> <mrow> <mi>h</mi> <mo>\u2192</mo> <mi>GG</mi> </mrow> <mi>AA</mi> <mrow> <mover> <mi>\u03a8</mi> <mo>\u00af</mo> </mover> <mi>\u03a8</mi> </mrow> </mfenced> </math>  $$ \\sigma \\left(\\mathcal{GG}\\to h\\right),\\Gamma \\left(h\\to \\mathcal{GG},\\mathcal{AA},\\overline{\\Psi}\\Psi \\right) $$  and Higgs width results via the geoSMEFT"
    }
  ], 
  "dois": [
    {
      "value": "10.1007/JHEP01(2024)170"
    }
  ], 
  "publication_info": [
    {
      "page_end": "50", 
      "journal_title": "Journal of High Energy Physics", 
      "material": "article", 
      "journal_volume": "2024", 
      "artid": "JHEP01(2024)170", 
      "year": 2024, 
      "page_start": "1", 
      "journal_issue": "1"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2024-04-25T00:31:13.510731", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "f33e3f60029a11ef81c58e7301cc4a06"
  }, 
  "page_nr": [
    50
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2024"
    }
  ], 
  "control_number": "83036", 
  "record_creation_date": "2024-01-29T09:30:23.234295", 
  "_files": [
    {
      "checksum": "md5:6bd56152304770d772a780b6bfe318cb", 
      "filetype": "xml", 
      "bucket": "9067362f-3ca2-4844-8145-f915f74d40af", 
      "version_id": "c10c54cb-72ac-4b6a-864b-7ac4d2e07174", 
      "key": "10.1007/JHEP01(2024)170.xml", 
      "size": 23205
    }, 
    {
      "checksum": "md5:fbd704f75a1bed5eee14d6ca03b650ba", 
      "filetype": "pdf/a", 
      "bucket": "9067362f-3ca2-4844-8145-f915f74d40af", 
      "version_id": "128ce729-8718-4e94-9552-836d38409692", 
      "key": "10.1007/JHEP01(2024)170_a.pdf", 
      "size": 1081248
    }
  ], 
  "collections": [
    {
      "primary": "Journal of High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph"
      ], 
      "value": "2305.05879"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We develop Standard Model Effective Field Theory (SMEFT) predictions of \u03c3(  <math> <mi>GG</mi> </math>  $$ \\mathcal{GG} $$  \u2192 h), \u0393(h \u2192   <math> <mi>GG</mi> </math>  $$ \\mathcal{GG} $$ ), \u0393(h \u2192   <math> <mi>AA</mi> </math>  $$ \\mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent \u0393(h \u2192   <math> <mover> <mi>\u03a8</mi> <mo>\u00af</mo> </mover> <mi>\u03a8</mi> </math>  $$ \\overline{\\Psi}\\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes \u0393, \u03c3 to a full set of corrections at   <math> <mi>O</mi> <mfenced> <mrow> <msubsup> <mover> <mi>v</mi> <mo>\u00af</mo> </mover> <mi>T</mi> <mn>2</mn> </msubsup> <mo>/</mo> <msup> <mi>\u039b</mi> <mn>2</mn> </msup> <msup> <mfenced> <mrow> <mn>16</mn> <msup> <mi>\u03c0</mi> <mn>2</mn> </msup> </mrow> </mfenced> <mn>2</mn> </msup> </mrow> </mfenced> </math>  $$ \\mathcal{O}\\left({\\overline{v}}_T^2/{\\varLambda}^2{\\left(16{\\pi}^2\\right)}^2\\right) $$  and   <math> <mi>O</mi> <mfenced> <mrow> <msubsup> <mover> <mi>v</mi> <mo>\u00af</mo> </mover> <mi>T</mi> <mn>4</mn> </msubsup> <mo>/</mo> <msup> <mi>\u039b</mi> <mn>4</mn> </msup> </mrow> </mfenced> </math>  $$ \\mathcal{O}\\left({\\overline{v}}_T^4/{\\Lambda}^4\\right) $$ , where   <math> <msub> <mover> <mi>v</mi> <mo>\u00af</mo> </mover> <mi>T</mi> </msub> </math>  $$ {\\overline{v}}_T $$  is the electroweak scale vacuum expectation value and \u039b is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For \u0393(h \u2192   <math> <mover> <mi>\u03a8</mi> <mo>\u00af</mo> </mover> <mi>\u03a8</mi> </math>  $$ \\overline{\\Psi}\\Psi $$ ), we include results at   <math> <mi>O</mi> <mfenced> <mrow> <msubsup> <mover> <mi>v</mi> <mo>\u00af</mo> </mover> <mi>T</mi> <mn>2</mn> </msubsup> <mo>/</mo> <msup> <mi>\u039b</mi> <mn>2</mn> </msup> <mfenced> <mrow> <mn>16</mn> <msup> <mi>\u03c0</mi> <mn>2</mn> </msup> </mrow> </mfenced> </mrow> </mfenced> </math>  $$ \\mathcal{O}\\left({\\overline{v}}_T^2/{\\Lambda}^2\\left(16{\\pi}^2\\right)\\right) $$  in the limit where subleading m \u03a8 \u2192 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects."
    }
  ], 
  "imprints": [
    {
      "date": "2024-01-26", 
      "publisher": "Springer"
    }
  ]
}
Published on:
26 January 2024
Publisher:
Springer
Published in:
Journal of High Energy Physics , Volume 2024 (2024)
Issue 1
Pages 1-50
DOI:
https://doi.org/10.1007/JHEP01(2024)170
arXiv:
2305.05879
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: