Towards heavy-mass nuclear structure: Open-shell Ca, Ni and Sn isotopes from Bogoliubov coupled-cluster theory
A. Tichai (Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg, Germany, ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany, Technische Universität Darmstadt, Department of Physics, Darmstadt, Germany)
; P. Demol (KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium)
; T. Duguet (IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France, KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium)
Recent developments in nuclear many-body theory enabled the description of open-shell medium-mass nuclei from first principles by exploiting the spontaneous breaking of symmetries within correlation expansion methods. Once combined with systematically improvable inter-nucleon interactions consistently derived from chiral effective field theory, modern ab initio nuclear structure calculations provide a powerful framework to deliver first-principle predictions accompanied with theoretical uncertainties. In this Letter, controlled ab initio Bogoliubov coupled cluster (BCC) calculations are performed for the first time, targeting the ground-state of all calcium, nickel and tin isotopes up to mass . While showing good agreement with available experimental data, the shell structure evolution in neutron-rich isotopes and the location of the neutron drip-lines are predicted. The BCC approach constitutes a key development towards reliable first-principles simulations of heavy-mass open-shell nuclei.