1.
|
Bounded Collection of Feynman Integral Calabi-Yau Geometries
/ Bourjaily, Jacob L. ; McLeod, Andrew J. ; von Hippel, Matt ; Wilhelm, Matthias
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. [...]
Published in Physical Review Letters 122 (2019)
10.1103/PhysRevLett.122.031601
arXiv:1810.07689
Fulltext: XML PDF;
|
2.
|
Traintracks through Calabi-Yau Manifolds: Scattering Amplitudes beyond Elliptic Polylogarithms
/ Bourjaily, Jacob L. ; He, Yang-Hui ; McLeod, Andrew J. ; von Hippel, Matt ; et al
We describe a family of finite, four-dimensional, -loop Feynman integrals that involve weight-() hyperlogarithms integrated over ()-dimensional elliptically fibered varieties we conjecture to be Calabi-Yau manifolds. [...]
Published in Physical Review Letters 121 (2018)
10.1103/PhysRevLett.121.071603
arXiv:1805.09326
Fulltext: XML PDF;
|
3.
|
Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms
/ Bourjaily, Jacob L. ; McLeod, Andrew J. ; Spradlin, Marcus ; von Hippel, Matt ; et al
We derive an analytic representation of the ten-particle, two-loop double-box integral as an elliptic integral over weight-three polylogarithms. [...]
Published in Phys. Rev. Lett. 120 (2018)
10.1103/PhysRevLett.120.121603
arXiv:1712.02785
Fulltext: XML PDF;
|
4.
|
Analytic representations of Yang–Mills amplitudes
/ Bjerrum-Bohr, N.E.J. ; Bourjaily, Jacob L. ; Damgaard, Poul H. ; Feng, Bo
Scattering amplitudes in Yang–Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space—fully localized on the support of the scattering equations. [...]
Published in Nuclear Physics B (2016)
10.1016/j.nuclphysb.2016.10.012
Fulltext: XML PDF PDF (PDFA);
|