Assignments of the , , , and Based on the QCD Sum Rules

Zhi-Gang Wang (Department of Physics, North China Electric Power University, Baoding 071003, China)

In this article, we take into account our previous calculations based on the QCD sum rules, and tentatively assign the X4630 as the DsD¯s1Ds1D¯s tetraquark molecular state or csPc¯s¯A+csAc¯s¯P tetraquark state with the JPC=1+, and assign the X3915 and X4500 as the 1S and 2S csAc¯s¯A tetraquark states, respectively, with the JPC=0++. Then, we extend our previous works to investigate the LHCb’s new tetraquark candidate X4685 as the first radial excited state of the X4140 with the QCD sum rules and obtain the mass MX=4.70±0.12 GeV, which is in very good agreement with the experimental value 4684±716+13 MeV. Furthermore, we investigate the two-meson scattering state contributions in details and observe that the two-meson scattering states alone cannot saturate the QCD sum rules, the contributions of the tetraquark states play an unsubstitutable role, and we can saturate the QCD sum rules with or without the two-meson scattering states.

{
  "_oai": {
    "updated": "2021-12-21T00:15:07Z", 
    "id": "oai:repo.scoap3.org:66703", 
    "sets": [
      "AHEP"
    ]
  }, 
  "authors": [
    {
      "surname": "Wang", 
      "given_names": "Zhi-Gang", 
      "raw_name": "Wang, Zhi-Gang", 
      "affiliations": [
        {
          "country": "China", 
          "value": "Department of Physics, North China Electric Power University, Baoding 071003, China"
        }
      ], 
      "full_name": "Wang, Zhi-Gang", 
      "orcid": "0000-0002-5203-6705"
    }
  ], 
  "titles": [
    {
      "source": "Hindawi", 
      "title": "Assignments of the , , , and Based on the QCD Sum Rules"
    }
  ], 
  "dois": [
    {
      "value": "10.1155/2021/4426163"
    }
  ], 
  "publication_info": [
    {
      "page_start": "4426163", 
      "journal_title": "Advances in High Energy Physics", 
      "year": 2021
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2021-12-21T00:15:01.400303", 
    "source": "Hindawi", 
    "method": "Hindawi", 
    "submission_number": "0945fa8261f311ecbc4196e84b9c3210"
  }, 
  "page_nr": [
    11
  ], 
  "license": [
    {
      "url": "http://creativecommons.org/licenses/by/3.0/", 
      "license": "CC-BY-3.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Copyright \u00a9 2021 Zhi-Gang Wang.", 
      "year": "2021"
    }
  ], 
  "control_number": "66703", 
  "record_creation_date": "2021-12-20T18:15:06.576923", 
  "_files": [
    {
      "checksum": "md5:7a89a62d757c182ce6af17b52b7a97e0", 
      "filetype": "pdf", 
      "bucket": "f19c790e-09f4-4315-a359-eb4bd2dce2e5", 
      "version_id": "a804d50a-cc54-4dd0-a591-7cad5ccaddda", 
      "key": "10.1155/2021/4426163.pdf", 
      "size": 675971
    }, 
    {
      "checksum": "md5:375a54164d8a2970b59a2d75843e160e", 
      "filetype": "pdf/a", 
      "bucket": "f19c790e-09f4-4315-a359-eb4bd2dce2e5", 
      "version_id": "5d3e3820-bfac-419d-8536-6cc9e08f6caa", 
      "key": "10.1155/2021/4426163.a.pdf", 
      "size": 570477
    }, 
    {
      "checksum": "md5:ba47129cd7ce5e3b7df452de02b26dec", 
      "filetype": "xml", 
      "bucket": "f19c790e-09f4-4315-a359-eb4bd2dce2e5", 
      "version_id": "6502fbf8-34bf-409d-9c8a-2539fccf04b5", 
      "key": "10.1155/2021/4426163.xml", 
      "size": 516343
    }
  ], 
  "collections": [
    {
      "primary": "Advances in High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph"
      ], 
      "value": "2103.04236"
    }
  ], 
  "abstracts": [
    {
      "source": "Hindawi", 
      "value": "In this article, we take into account our previous calculations based on the QCD sum rules, and tentatively assign the <math id=\"M5\"><mi>X</mi><mfenced><mrow><mn>4630</mn></mrow></mfenced></math> as the <math id=\"M6\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>\u2217</mo></mrow></msubsup><msub><mrow><mover><mi>D</mi><mo>\u00af</mo></mover></mrow><mrow><mi>s</mi><mn>1</mn></mrow></msub><mo>\u2212</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mn>1</mn></mrow></msub><msubsup><mrow><mover><mi>D</mi><mo>\u00af</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mo>\u2217</mo></mrow></msubsup></math> tetraquark molecular state or <math id=\"M7\"><msub><mrow><mfenced><mrow><mi>c</mi><mi>s</mi></mrow></mfenced></mrow><mrow><mi>P</mi></mrow></msub><msub><mrow><mfenced><mrow><mover><mi>c</mi><mo>\u00af</mo></mover><mover><mi>s</mi><mo>\u00af</mo></mover></mrow></mfenced></mrow><mrow><mi>A</mi></mrow></msub><mo>+</mo><msub><mrow><mfenced><mrow><mi>c</mi><mi>s</mi></mrow></mfenced></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mfenced><mrow><mover><mi>c</mi><mo>\u00af</mo></mover><mover><mi>s</mi><mo>\u00af</mo></mover></mrow></mfenced></mrow><mrow><mi>P</mi></mrow></msub></math> tetraquark state with the <math id=\"M8\"><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>\u2212</mo><mrow><mo>+</mo></mrow></mrow></msup></math>, and assign the <math id=\"M9\"><mi>X</mi><mfenced><mrow><mn>3915</mn></mrow></mfenced></math> and <math id=\"M10\"><mi>X</mi><mfenced><mrow><mn>4500</mn></mrow></mfenced></math> as the 1S and 2S <math id=\"M11\"><msub><mrow><mfenced><mrow><mi>c</mi><mi>s</mi></mrow></mfenced></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mfenced><mrow><mover><mi>c</mi><mo>\u00af</mo></mover><mover><mi>s</mi><mo>\u00af</mo></mover></mrow></mfenced></mrow><mrow><mi>A</mi></mrow></msub></math> tetraquark states, respectively, with the <math id=\"M12\"><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi><mi>C</mi></mrow></msup><mo>=</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo><mrow><mo>+</mo></mrow></mrow></msup></math>. Then, we extend our previous works to investigate the LHCb\u2019s new tetraquark candidate <math id=\"M13\"><mi>X</mi><mfenced><mrow><mn>4685</mn></mrow></mfenced></math> as the first radial excited state of the <math id=\"M14\"><mi>X</mi><mfenced><mrow><mn>4140</mn></mrow></mfenced></math> with the QCD sum rules and obtain the mass <math id=\"M15\"><msub><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>=</mo><mn>4.70</mn><mo>\u00b1</mo><mn>0.12</mn><mtext> </mtext><mtext>GeV</mtext></math>, which is in very good agreement with the experimental value <math id=\"M16\"><mn>4684</mn><mo>\u00b1</mo><msubsup><mrow><mn>7</mn></mrow><mrow><mo>\u2212</mo><mn>16</mn></mrow><mrow><mo>+</mo><mn>13</mn></mrow></msubsup><mtext> </mtext><mtext>MeV</mtext></math>. Furthermore, we investigate the two-meson scattering state contributions in details and observe that the two-meson scattering states alone cannot saturate the QCD sum rules, the contributions of the tetraquark states play an unsubstitutable role, and we can saturate the QCD sum rules with or without the two-meson scattering states."
    }
  ], 
  "imprints": [
    {
      "date": "2021-12-20", 
      "publisher": "Hindawi"
    }
  ]
}
Published on:
20 December 2021
Publisher:
Hindawi
Published in:
Advances in High Energy Physics (2021)

DOI:
https://doi.org/10.1155/2021/4426163
arXiv:
2103.04236
Copyrights:
Copyright © 2021 Zhi-Gang Wang.
Licence:
CC-BY-3.0

Fulltext files: